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CROp production is one of the most important agro-global issues, in particular questions 
of production under changing environmental conditions. This production needs to be in-

creased to meet global needs for food, feed, fiber and fuel. Alfalfa is classified as “the queen 
of the forage crops” due to its high protein content and nutritional valueas well as its unique 
availability during the summer compared with other forage crops. The production of alfalfa 
under different stressful environments is a great challenge due toseveral problems with alfalfa 
crop production, which represent a serious threat to global food security.These stresses may 
cause a decline in the global feed production from alfalfa due to harmful effects resulting from 
stressesat the physiological, biochemical and histological levels. To improve the production of 
alfalfa under these stresses, there is a crucial need to understand the response of alfalfa plants to 
stresses, the mechanisms of tolerance and the management options. The bio-organic fertilizers 
derived from alfalfa plants are a crucial and sustainable solution in particular under stressful 
environments. This review represents an attempt to highlight the positive sides of alfalfa pro-
duction, particularly the sustainable use of this crop in bio-organic fertilizer production. The 
chemical and anatomical properties of this plant will also bereviewed. The histology of alfalfa 
plants under changing environments still needsfurther investigation.

Keywords: Abiotic stress, Alfalfa Taxonomy and Anatomy,Climate change, Drought, Salinity.

Introduction                                                                                                                                         

Global population has increased rapidly over the 
last few decades and may reach 9.8 billion by 
2050 (Kopittke et al. 2019). The main challenge 
faced by agricultural scientists is producing 
enough healthy foods for all these people. The 
agricultural sector is the main source of food, 
feed, and fiber as well as a major source of fuel 
(Brevik et al. 2019). Global agriculture is facing 
many challenges including soil organic matter 
decline, low nutrient use efficiency, crop yield 
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stagnation, multi-nutrient deficiencies and water 
scarcity (Raliya et al. 2018). Crop productivity 
is greatly influenced by manyabiotic stresses 
such as salinity, drought, waterlogging or 
flooding and heavy metals (Gopinath et al. 
2018; Ullah et al. 2019). Furthermore, many 
environmental issuesrepresent serious threatsto 
crop production (e.g, climate change, pollution, 
water and energy scarcity).Therefore, there is an 
urgent need to address the problems caused by 
these environmental issues (Fahad et al. 2017; 
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Lamaoui et al. 2018; Hussain et al. 2018; Sehgal 
et al. 2018; Dahal et al. 2019 and Rodrigues et 
al. 2019). 

Alfalfa (Medicago sativa L.) could be 
considered the most important legume forage 
crop in the world and is primarily used as silage, 
hay and pastureto feed livestock (Hawkins and 
Yu, 2018 and patra & paul, 2019).This plant also 
called “lucerne” in Europe and other countries 
and its sprouts can be used as a staple crop 
for animals and humans due to its impressive 
nutritional content,including vitamins (i.e., 
B, C, D and E),high protein content and other 
important minerals (Baker et al. 2019; Mattioli 
et al. 2019 and Michalczyk et al. 2019). Alfalfa 
was originally cultivated in south-central Asia 
(modern Iran)and it is well known as the “Queen 
of Forage” because of its high biomass yield, 
good quality of its forage and its palatability for 
ruminants (Lei et al. 2017). Alfalfa can grow in 
a wide range of soils and under several growing 
conditions,including nutrient-poor soils (Lei 
et al. 2017).More than 40 million hectares are 
cultivated worldwide (Luo et al. 2019). Alfalfa 
yields arehigher in light-textured soil conditions 
(e.g., sandy loam, silty loam and clay loam) than 
in heavy textured soils (Kavut and Avcioglu, 
2015 and Mbarki et al. 2018). Alfalfa could be 
considered one of the most important cropsfor 
sustainable agriculture due to its promotion 
of soil fertility, abiltity to feed livestock in 
mixed production systems, N-fixation rate and 
ability to reduce greenhouse gas emissions 
(Annicchiarico et al. 2016; Luo et al. 2018 
and Kulkarni et al. 2018). This plant can grow 
under arid and semi-arid conditions (200 mm 
annual precipitation) due to its relatively deep 
root system and enhancement of antioxidative 
protection and declining lipid peroxidation as a 
tolerant crop to water deficits (Lei et al. 2017 
and Zhang et al. 2019). Based on its use in the 
production of organic acids and ethanol, alfalfa 
has great potential as a biofuel feedstock (Luo et 
al. 2019).

The cultivation of forage crops (in particular 
alfalfa) is an important issue for animal nutrition 
and the sustainability of thehuman food supply 
(Hedayetullah and Zaman, 2019). The production 
of alfalfa is totally controlled by environmental 
factors including biotic and abiotic stresses. 
These stresses can cause a significant reduction 
in the productivity of crops. Due to the 
importance of alfalfa, there has been increasing 

recent interest in cultivating alfalfa under 
stressful environments (Stritzler et al. 2018). 
In the past few decades, a considerable amount 
of literature has been published on the growth 
and production of alfalfa under different abiotic 
stresses. These studies focused on high-quality 
alfalfa production under stresses like salinity 
(Sandhu et al. 2017; Stritzler et al. 2018 and Luo 
et al. 2019), drought (Liu et al. 2018; Zhao et al. 
2019 and Zhang et al. 2019) and heavy metals 
like cadmium (Kabir et al. 2016; Gu et al. 2018; 
Motaharpoor et al. 2019 and Yang et al. 2019) 
and copper (Samma et al. 2017; Chen et al. 2018; 
Duan et al. 2019 and Ju et al. 2019). 

This study systematically reviews the data 
foralfalfa production intendingto provide a 
comprehensive overview on biochemical and 
anatomical aspects of the alfalafa plant. Drawing 
upon stressful environment research into alfalfa, 
this study attempts to present the several benefits 
of this crop under stress.

Alfalfa Taxonomy 
Alfalfa (Medicago sativa L.) belongs to the 

genus Medicago within the Fabaceae family. 
Cultivated alfalfa plants are considered an 
outcrossing ploidy as tetraploid  (2n = 4× = 32) 
or diploid (2n = 2x = 16), where the pod shape 
may be coiled or falcate, the flower color is 
yellow (Greene et al. 2015), purple or variegated 
and glandular hairs may be absent or present 
(Monteros et al. 2014 and Hawkins & Yu, 
2018). The botanical classification includes the 
following taxonomy (Bagavathiannan and Van 
Acker 2009):

Kingdom: plantae (plants)

Subkingdom: Tracheobionta (Vascular 
plants)

Superdivision: Spermatophyta (Seed 
plants)

Division: Magnoliophyta (Flowering 
plants)

Class: Magnoliopsida (Dicotyledons)

Subclass: Rosidae

Order: Fabales

Family: Fabaceae (pea family)

Genus: Medicago 

Species: Sativa

Common name: alfalfa or lucerne
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The genus Medicago contains at least 87 
species, which are mainly distributedaround the 
Mediterranean basin. This genus is represented 
by flowering plants in the Fabaceae family and 
well known as medick or burclover. This name 
orginated from the Greek word Median or grass 
and is based onthe Latin name medica. The most 
important member in this genus is alfalfa. The 
general chromosome numbers in the Medicago 
genus may range from 2n = 14 to 48. Apart from 
Medicago sativa, there are many members in 
theMedicago genus such asMedicago truncatula. 
M. truncatula could be considered a model 
legume due to its small genome (50–550 Mbp; 
Gholami et al. 2014), short life cycle (about 3 
months) and its ability to pollinate through both 
self-crossing and outcrossing (Burks et al. 2018; 
Roque et al. 2018). The members of theMedicago 
genus are characterized by their ability to 
produce many bioactive natural compounds, 
which can join in symbiotic interactions to 
preventattacks from herbivores and pathogens. 
These bioactive products have promising 
pharmaceutical properties for humans and are 
found in many secondary metabolite classes 
in Medicago species such as medicagenic acid 
(as a triterpenoid saponin) and medicarpin as a 
flavonoid (Gholami et al. 2014; Rafińska et al. 
2017; Gill et al. 2018; Khalid et al. 2019). Many 
Medicago species have the potential to be used as 
green manure, sources of medicine, human food 
(e.g., sprouts) and in the biotechnology sector as 
a source of industrial enzymes (Gholami et al. 
2014). 

There is no possibility to hybridize the 
Medicago genus with any other genera.Nearly 
two-thirds of Medicago species are annual crops 
with the others being perennial crops, including 
cultivated alfalfa.Recently, some investigators 
have examined evidence of successful 
interspecific hybridization in Medicago species 
(e.g., Bagavathiannan and Van Acker 2009; 
Greene et al. 2015; Sousa et al. 2016, 2017; 
Eriksson et al. 2018). These efforts can be 
summarized for the most important species of 
theMedicago genus,aside from Medicago sativa 
and Medicago truncatula,as follows:

M. glomerata (2n = 2x = 16)

M. rhodopea (2n = 2x = 16)

M. rupestris (2n = 2x = 16)

M. daghestanica (2n = 2x = 16)

M. pironae (2n = 2x = 16)

M. marina (2n = 2x = 16)

M. hybrida (2n = 2x = 16)

M. dzhawakhetica (2n = 4x = 32)

M. saxatilis (2n = 6x = 48)

M. cancellata (2n = 6x = 68)

M. papillosa (2n = 2x = 16; 2n = 4x = 32)

M. prostrata (2n= 2x = 16; 2n = 4x = 32)

There is a growing body of literature that 
recognizes the importance of the plant genome 
and its database. The plant genome represents 
the genetic material of the plant or the collected 
genomic sequence of a plant species. The plant 
genome database is considered a storage platform 
system, in which more data could be included 
due to the rapid development of bioinformatics 
(Chen et al. 2018). The genome of Medicago 
speciesinvolving alfalfa has been investigated 
by many researchers recently,including 
exploring the structural variation in 15 Medicago 
genomes and their gene family (Zhou et al. 
2017), genetic progress in alfalfa forage quality 
through mapping and genomic selection (Biazzi 
et al. 2017), the availability of genomic data 
(Burks et al. 2018), the sequenced angiosperm 
genomes and itsdatabase (Chen et al. 2018), 
alfalfa genomic prediction for 25 quality and 
agronomic traits (Jia et al. 2018), the discovery 
of theplastome traits within Medicago species 
(Choi et al. 2019), and improving the yield 
potential of alfalfa via quantitative trait loci 
mapping (Zhang et al. 2019).

Alfalfa Anatomy
Study of the internal structure of alfalfa 

and its parts (i.e., the roots, stems and leaves) 
as well as its systems (e.g., the root, vegetative 
and reproductive system), could be called the 
plant’s anatomy Crang et al. 2018). This science 
was established and developed many hundreds 
of years ago and still receives a large amount 
of effort, including original articles, reviews 
and books (examples of recent books: Beck 
2010; Maiti et al. 2012; Steeves and Sawhney 
2017; Crang et al. 2018). These efforts have 
real potential or importance in different fields, 
in particular the environmental and agricultural 
sciences (e.g., Carriquí et al. 2019; Farooq et 
al. 2019; Lisztes-Szabó 2019; Wang et al. 2019; 
Zhong et al. 2019). Therefore, understanding 
of the plant’s anatomy may guarantee sound 
knowledge of the plant’s structural components 
and the function of each component. It is well 
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documented that the plant’s anatomy is a good 
guide toshow modifications in plant structure 
and further its development in response to 
environmental adaptations (Rosmala et al. 2016 
and Steeves & Sawhney, 2017). Furthermore, 
the growing and developing of plant tissues 
and organs under undesired conditions could 
be monitored using the modern tools of plant 
anatomy. This modern anatomy also has been 
emphasized using the recent applications of 
molecular genetics (Wachsman et al. 2015; 
Chomickiet al. 2017 and Steeves & Sawhney, 
2017). Therefore, understanding the anatomy of 
alfalfa is vital and required for several purposes 
such as understanding fiber content and its 
use in animal feed as well as the root structure 
and the resistance of alfalfa plants to stressful 
conditions.However, there is little work linking 
alfalfa anatomy to stressful conditions (e.g., 
Gronwald and Bucciarelli 2013; printz et al. 
2015; Moawed 2016; Mickky et al. 2018 and Nja 
et al. 2018).

Seeds of Alfalfa
Upon germination, the plant hasa slow 

emergence rate. The crown is formed first, 
followed by the establishment of a strong and 
deep root system. The crown of the alfalfa 
carries the shoot buds and has the ability to re-
grow many times after cutting or grazing. The 
seeds of alfalfa are kidney shaped (Fig. 1). The 
alfalfa seeds are also an important source of 
sprouts,which areconsidered one of the most 
popular seed sprouts in recent decades (Kang et 
al. 2019).

Stem of Alfalfa
The stem supports the aerial portions of the 

alfalfa plant, in particular the leaves and flowers 
(Fig. 2). The main role of the stems is the proper 
distribution of leaves and flowers toguarantee 
the maximum absorption of light and successful 
pollination, respectively (Crang et al. 2018).The 
hemicellulose and cellulose contents in mature 
alfalfa stems average 120 and 310 g kg−1 dry 
basis, respectively, which might be hydrolyzed 
into sugars(Hojilla-Evangelista et al. 2017). The 
content of cellulose and hemicellulose increases 
with plant age, whereas the pectins decrease 
with increasing stem maturity (printz et al. 
2015). 

Leaf of Alfalfa
plant leaves are the greatest factories on 

earth, in which photosynthetic productsare pro-
duced (Fig. 3). This factory absorbs light through 

Fig. 1. The seeds of the Hungarian variety “Hunor” 
of alfalfa. Seed under stereo microscope 
(photo 1) and transection of seeds under a 
light microscope (photos 2 and 3). Scale 
bar for photos 1, 2 and 3 is 50, 5 and 5 µm, 
respectively.
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Fig. 2. The anatomical structure of the alfalfa stem in the Hungarian variety “Hunor”. Whole cross- section of 
stem (photo 1), trichome type of stem (photo 2), and partial transection of stem (photos 3 and 4 in two 
different scales). Scale bar for photos 1, 2, 3 and 4 is 100, 5, 10 and 20 µm, respectively. All sections were 
stained by toluidine blue

Fig. 3. The anatomical structure of the alfalfa leaf in the Hungarian variety “Olimpia”. Cross- section of leaf 
arm (photo 1) and cross section of the main vein (photo 2). Scale bar for photos 1 and 2 is 10 and 20 µm, 
respectively. All sections were stained by toluidine blue
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the thousands of chloroplasts and uptakescarbon 
dioxide to produce food (Crang et al. 2018).The 
most important component of alfalfa for animal 
feed is the leaves, which have the highest protein 
content (up to 300 g kg−1 DB)in comparing with 
protein content in the stems, which is up to 120 g 
kg−1 DB (Hojilla-Evangelista et al. 2017).

Alfalfa Productivity under Abiotic Stress 
production of alfalfa is mainly controlled by 

environmental and botanical factors as well as 
environmental stresses (Zahran, 2017). These 
adverse environmental conditions represent a 
serious threat to alfalfa growth, development, 
survival and productivity with marked impacts 
at biochemical, morphological, physiological 
and molecular levels (Zhang et al. 2018). The 
previouslymentioned plant levels of proteins and 
fiber are the responsible items for the quality and 
yield of alfalfa (Luo et al. 2019). Under abiotic 
stresses (e.g., salinity, drought, heavy metals 
stress,and changes in climate) the production 
of alfalfa is projected to decrease,threatening 
global feed and food security (Reed et al. 
2018). Due to the importance of environmental 
stresses, several studieshave addressed the 
impact of these stresses on alfalfa growth and 
productivity,including the affects of soil salinity 
(Sandhu et al. 2017; Wang et al. 2017; Lei et al. 
2018; Noori et al. 2018; Stritzler et al. 2018; 
Gao et al. 2019b; Luo et al. 2019 and Yang et 
al. 2019), drought (Ma et al. 2016; Liu et al. 
2018; Zhang et al. 2018; Zhao et al. 2019 and 
Zhang et al. 2019), irrigation water stress (Chen 
et al. 2018; Jia et al. 2018; Wang et al. 2018 and 
Baker et al. 2019),waste water stress (Rekik et 
al. 2017 and Elfanssi et al. 2018), water table 
stress (Berhongaray et al. 2019), fertilization 
stress (Gu et al. 2018) and general environmental 
issues (Bacenetti et al. 2018 and Ghaderpour et 
al. 2018).

Alfalfa Germination under Salinity 
Stress

Germination is considered the most 
important growth stage of cultivated crops 
and the most critical period in the plant’s life, 
particularly under stressful environments. 
Alfalfa is moderately sensitive to soil salinity 
and relatively tolerant to drought (Ma et al. 
2017). Alfalfa biomass yield can be reduced to50 
% when soil salinity (EC) reaches 8.8 dS m-1, 
whilstalfalfa seeds willgerminate well atsalinity 
levels ofabout 2.0 dS m-1 (FAO 2002). Salinity 
is considered one of the most serious stresses 

for alfalfa (Table 1). The main effects of salinity 
are ion toxicity (mainly sodium ions), hyper-
osmotic pressure (which results in low water 
availability) (Luo et al. 2019), oxidative stress 
and nutrient deficiency (Boukari et al. 2019). 
plants cultivated under salinity stress have 
certain defense mechanismstowards this stress 
in the form of a series of severe biochemical and 
physiological changes.Salinity stress may also 
disturb the regulation of plant hormones and 
photosynthesis processes causing an imbalance 
in plant nutritional status, reducing plant yield 
and quality (Farooq et al. 2017).The main effects 
of soil salinity on alfalfa reproduction include 
negative impacts on germination and growth, 
competition for the uptake of mineral nutrients, 
the photosynthetic process, the efficiency of 
biological nitrogen fixation and yield quality 
(Farooq et al. 2017). Alfalfa may adopt one or 
more of the following tolerance mechanisms 
towards salinity: ion homeostasis, osmotic and 
hormonal regulation, osmotic protection, the 
antioxidant defense system, and an increase 
in apoplastic acidification (Farooq et al. 
2017). 

The main management strategies for 
legume crops under salinity stress include 
the use of conventional breeding approaches, 
biotechnology and functional genomics, plant 
growth promoting rhizobacteria, application 
of exogenous hormones and osmoprotectants, 
inoculatingthe seeds with arbuscular mycorrhizal 
fungi, seed priming and nutrient management 
(Farooq et al. 2017).In general, changes in 
cultivated plants under salinity stress and the 
projected coping mechanisms of crops,including 
alfalfa,towards this stress include:

(1) Regulating water (Reef et al. 2015) and 
hormonal (Belmecheri-Cherifi et al. 2019) 
balances in the plant,

(2) Maintaining the integrity of plant cell 
membranes (Feng et al. 2018),

(3) Accumulating compatible solutes or 
osmolytes (e.g., proline, glycine betaine and 
total soluble sugars) to adjust the cellular 
osmotic pressure (Kumar et al. 2017; Vyrides 
and Stuckey 2017 and León et al. 2018),

(4) Scavenging reactive oxygen species (ROS) 
and activating the antioxidant system,including 
non-enzymatic antioxidants (ascorbate, 
gluthatione, malondialdehyde, total phenolic 
compounds and total antioxidant flavonoids) 
and antioxidant enzymes (superoxide dismutase, 
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catalase, ascorbate peroxidase and glutathione 
reductase) (Kumar et al. 2017; Makavitskaya 
et al. 2018; Xiong et al. 2018 and Gao et al. 
2019a),

(5) Balancing the uptake of nutrients like 
Na+ and K+ (Alsaeedi et al. 2019 and Jiang et 
al. 2019) and reinstating the cellular ionic 
equilibrium, then reducing the ionic or osmotic 
damage that was caused by salinity stress (Luo 
et al. 2019),

(6) Maintaining the performance of 
photosynthetic CO

2
 assimilation and sinks 

(penella et al. 2016). preventing reduction 
in the photosynthetic attributes as well as 
alleviating stomatal parameters and chlorophyll 
fluorescence by adding H

2
S under salinity stress 

(Jiang et al. 2019),

(7) priming of alfala seeds in salicylic acid 
may improve the plant’s tolerance to salin-
ity stress and iron deficiency (Boukari et al. 
2019),

(8) Due to water uptake inhibition and/or the 
specific toxic impact of ions in the embryo of 
legume seeds, seed germination may be reduced 
up to 50% or more under salt stress(Table 5) 
(Farooq et al. 2017; Gao et al. 2019b),

(9) Salinity stress may reduce the growth of 
legumes more than 70% and reduce the uptake 
of mineral nutrients as well as the yield from 12 
to 100% because of the toxicity of specific ions 
and reduction in the photosynthesis process rate 
(Farooq et al. 2017), 

(10) Microbes can play a large role in plants 
which influenced by salt stress (Salwan et al. 

2019). The presence of certain bacteria or plant 
growth promoting rhizobacteria (Noori et al. 
2018 and Ju et al. 2019) and the mycorrhizal 
association with arbuscular mycorrhizal fungi 
(Ben Laouane et al. 2019) can improve salinity 
tolerance because these microbes may help in 
thebioavailability of plant nutrients (Farooq et 
al. 2017).

During alfalfa plant growth and development, 
the germination and early seedling stagesare 
considered the most important and crucialfor 
plant establishment. Tolerance to salinity at 
the physiological and proteomic levels during 
the germination stage has been investigated by 
many researchers but still needs more studies 
(Gao et al. 2019b). Researchers have shown an 
increased interest in investigating the proteomic 
response of alfalfa to stressful environments 
(e.g., Gou et al. 2019; Li et al. 2018 and Singer 
et al. 2018), but little attention has been given 
to the behavior of alfalfa under salinity stress 
during the germination stage (e.g., Amooaghaie 
and Tabatabaie 2017; Ma et al. 2017 and Gao et 
al. 2019b). This stress restricts water uptake, in 
which a hydrolysis of reserved food in the seed 
could occur due to enzyme activity(e.g., alcohol 
dehydrogenase and fructokinase activities). This 
step includes inhibiting the start of metabolism 
and interrupting the mobilization of starch in the 
germination stage (Gao et al. 2019b).

The response of alfalfa to salinity stress 
based on the genetic approach (Luo et al. 
2019). That means breeding to emphasize the 
genes that are important candidates to improve 

TABLE 1. Germination rate of some alfalfa cutivars at different levels of salt stress

Alfalfa variety or 
ecotype

Salt concentration and 
growth media 

Germination 
rate (%) 

The aim of the study Reference

Gabes and presmenti 
ecotypes

75 mM NaCl in petri 
dishes for 3 days

------
Role of salicylic acid in improv-
ing seed tolerance to salinity

Boukari et al. 
(2019)

Zhongmu no. 1 200 mmol L-1 NaCl for 
10 days in petri dishes

60 The proteomic changes in two 
contrasting alfalfa cultivars

Gao et al. 
(2019b)

Zhongmu no. 3 80

Zhongmu no.3 (salt-
tolerant cultivar)

300 mM NaCl for 10 
days in petri dishes

30
proteomic and physiological 
study at germination stage

Ma et al. 
(2017)

Hamedani (cv.)
150 mM NaCl for 5 
days in petri dishes

45
Low H

2
O

2
 alleviates salt stress 

during germination 

Amooaghaie 
and Tabatabaie 
(2017)

Biaogan (cv.)
100 mM NaCl in petri 
dishes for 3 days

50
Role of methane in alleviating 
NaCl toxicity during seed ger-
mination

Zhu et al. 
(2016)
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the plant’s resistance to salinity stress using 
genetic engineering (Luo et al. 2019). Therefore, 
the productivity of alfalfa could be improved 
through the use of molecular tools (Lei et al. 
2017 and Singer et al. 2018) in general or under 
salinity stress (Ma et al. 2017; Gruber et al. 2017; 
Gao et al. 2019b and Luo et al. 2019). There has 
also been renewed interest in the role of mineral 
nutrients such as calcium, sulfur, potassium, 
silicon, selenium, etc. in supporting plants 
against salinity stress (Rizwan et al. 2015; Jabeen 
2018; Xiong et al. 2018; Yang and Guo 2018a, 
b and Zhu et al. 2019). Further investigations 
are needed into the use of mineral nutrients and 
molecular geneticsto improve alfalfa production 
under salinity stress.

Alfalfa production under Drought Stress
Drought is a great threat that isconsidered 

one of the most important abiotic stresses and 
can limit the productivity of cultivated crops, 
causing enormous losses of yield (Zhang and 
Shi 2018; Laxa et al. 2019 and Zhang et al. 
2019). Drought is common in arid and semi-arid 
regions, but is expected to increase in other areas 
due to global climate change, urbanization and 
deforestation (Zhang and Shi, 2018). Therefore, 
there is an urgent need for producing new 
varieties of major crops produced using plant 
breeding and molecular biology approaches 
thatare more tolerant to drought stress (Joshi et 
al. 2016 and Singh et al. 2019). 

The investigation of alfalfa and its production 
under drought or water deficit stress is of interest 
to scientists all over the world due to the economic 
value of this crop. These studies include the 
physiological, biochemical and proteomic or 
molecualraspects of alfalfa varieties under drought 
stress (Fan et al. 2015; Quan et al. 2016; Ma et 
al. 2017; Singer et al. 2018; Zhang and Shi 2018 
and Zhang et al. 2018)and its tolerance through 
enhancing the production of antioxidants and 
declining lipid peroxidation (Singer et al. 2018 
and Zhang et al. 2019), pretreatment of alfalfa 
with priming agents such as phytohormones 
like jasmonateascorbic acid or polyethylene 
glycol (Salemi et al. 2019), reactive oxygen-
nitrogen-sulfur species (Antoniou et al. 2016) and 
melatonin (Antoniou et al. 2017). These studies 
also reported on the crucial impact of drought 
stress on the nutritional composition of alfalfa 
and its yield (Liu et al. 2018). More studies on the 
metabolism of carbohydrates and photosynthesis 
efficiency of alfalfa seedlings in the presence of 

NO (Zhao et al. 2019), the phenotypic variations 
and genetic diversity related todrought tolerance 
inalfalfa accessions (Zhang et al. 2018) have been 
published.Themolecular or proteomic analysis of 
alfalfa under drought (Ma et al. 2016; Arshad et 
al. 2017; Li et al. 2017), during seed germination 
(Ma et al. 2017), also were involved. Some 
recent studies on the impact of drought on alfalfa 
production are summarized in Table 2.

In general, resistance of plants to drought stress 
can be classified into the following mechanisms 
(1) escaping from drought, (2) avoiding the 
drought, (3) tolerant to drought and (4) drought 
recovery (Fang and Xiong 2015 and Zhang et 
al. 2019). To be tolerant, alfalfa breeding should 
enhance the plant defence system, represented by 
high levels of enzymatic antioxidants (catalase, 
peroxidase, superoxide dismutase, glutathione 
reductase, ascorbate peroxidase) or non-enzymatic 
(ascorbate, proline, malondialdehyde, glutathione) 
(Zhang and Shi, 2018). It was concluded that 
further investigations are needed to understand 
the behavior of alfalfa under drought stress.In 
particular, the –omics approaches along with 
molecular biology and morpho-physiological 
analysis are needed for more elucidation of the 
alfalfa complex networks and identification 
ofproteins and theircore genes (Zhang and Shi, 
2018).

The process of symbiotic N
2
 fixation in alfalfa 

and other legumes is a distinguishing feature, 
which gives these legumes an economical benefit. 
This process is sensitive to many environmental 
factors particularly drought or water stress. 
The low availability of soil water content might 
decrease the N

2
-fixation of field grown soybean 

and lentil (parvin et al. 2018). Under semi-arid 
environments, the drying of soils is considered a 
significant constraint for N

2
 fixation of legumes 

and the N uptake, where the N content in seed 
legumes will be controlled by the re-mobilization 
of the previous assimilated N-from vegetative 
tissues (parvin et al. 2019b). Several studies 
have been handled the efficiency of N

2
 fixation 

of legumes under drought stress (e.g., Aung et 
al. 2017; Aldasoro et al. 2019 and Zhao et al. 
2019). The improving efficiency of water use and 
N

2
 fixation by enriching CO

2
 under drought on 

of pea (Pisum sativum L.) also was investigated 
(parvin et al. 2019a). The most common impact 
of drought on N

2
 fixation of legumes may include 

accumulation of C and N compounds in leaves 
andnodule tissues, and decrease the activity of N

2
-

fixation of drought-stressed plants (parvin et al. 
2019b).
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TABLE 2. Some studies on the production of alfalfa under drought stress

The study conditions The aim of the study and response of plant Reference

Seeds (cv. Ghomi) primed in AsA 
(1 mM) and pEG (7.8 Mm) for 6 h, 
water stress level -0.5 Mpa

priming seeds with AsA and pEG may help seedlings to 
ameliorate drought by increasing proline, soluble sugars, 
total phenolics, and antioxidant enzyme activities; by de-
creasing hydrogen peroxide and malondialdehyde in the 
seedlings

Salemi et al. 
(2019)

Three alfalfa varieties (Longzhong, 
Longdong, Gannong No. 3) under 
applied pEG-6000, osmotic potential 
of -1.2 Mpa for 12 days 

Drought decreased growth, photosynthetic capacity, in-
creased malondialdehyde accumulation, ROS, osmolytes 
and antioxidant enzyme activities (e.g., ApX) 

Zhang et al. 
(2019)

Seeds (cv. Sanditi) immersed in 
dH

2
O and pEG-6000 (5, 10, 15, 20, 

25%), then 200 μM NO scavenger 
for 7 days

NO can regulate the response of alfalfa seedlings to drought 
by enhancing the metabolism of carbohydrate and photo-
synthesis efficiency 

Zhao et al. 
(2019)

Two varieties (Longzhong and Gan-
nong No. 3), seedlings were exposed 
to −1.2 Mpa pEG-6000 for 15 days

Drought-tolerance may be attributed to higher osmotic ad-
justment capacity, enzymatic (GR, SOD, pOD, CAT, ApX) 
and non-enzymatic antioxidant (proline, MDA, AsA, GSH) 
to avoid oxidative damage

Zhang and Shi 
(2018)

Three alfalfa varieties (Longzhong, 
Longdong and Gannong No. 3); 
under osmotic potential: − 0.4, − 0.8, 
− 1.2, − 1.6 and − 2.0 Mpa

Changes in biochemical and physiological characteristics 
under drought: increased lipid peroxidation, osmolytes con-
tents, ROS production, levels of antioxidative enzymes and 
antioxidants with increasing drought stress

Zhang et al. 
(2018) 

Field experiment, two cultivars 
(Gold Queen and Suntory) harvested 
early during a flowering stage or late 
at full bloom

Drought decreases alfalfa yield and its nutritional value; 
severe drought decreased the crude protein content and hay 
yield, increased the fiber, irrigation management and har-
vesting time can mitigate drought stress

Liu et al. 
(2018)

Field experiment for 6 years under 
drought, four p levels: 0, 9.73, 19.3, 
28.9 kg p ha−1

Forage yield and WUE increased under plastic film mulch, 
p fertilization at 16.1 or 17.5 kg p ha−1 improved soil water 
condition and forage yield under drought

Gu et al. 
(2018)

pot experiment used under 10 μΜ 
melatonin, seedlings were imposed 
for drought stress by withholding 
watering for 7 days

Melatonin may ameliorate drought damage through 
regulation of reactive oxygen (CAT, ApX, SOD, GR), 
modulates nitro-oxidative homeostasis and proline 
metabolism, regulates redox-related components and 
mRNA antioxidant levels

Antoniou et al. 
(2017)

Two varieties (Longdong and Algon-
quin), 6 days after germination the 
seedlings were transferred to plastic 
pots filled with vermiculite, drought-
stress induced by withholding water 
for 18 days

Morphological, physiological, and transcriptional levels 
could be used in confirming the tolerant to drought stress, 
variety more tolerant to drought exhibits more proline and 
ascorbate content, more lateral roots, higher LWC, higher 
antioxidant enzyme activity, less cell membrane damage, 
less accumulation of H

2
O

2
, lower stomata density

Quan et al. 
(2016)

Abbreviations:pEG: polyethylene glycol, AsA: ascorbic acid; MDA: malondialdehyde; SOD: superoxide dismutase; 
GR: glutathione reductase; pOD: peroxidase; CAT: catalase; ApX: ascorbate peroxidase; NO: Nitric oxide; AsA: ascor-
bate; GSH: glutathione; WUE: water use efficiency; LWC: leaf water content 
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Alfalfa  and  Its Potential in Phytoremediation
The modern world faces great challenges 

including non-enough clean water, natural 
resources depletion, the management of 
hazardous wastes and remediating polluted 
environments (Tilla and Blumberga 2018). 
Several studies have investigated environmental 
pollution and its remediation (e.g., Wu et al. 2017; 
Tilla and Blumberga 2018 and Ye et al. 2019). 
Remediation is a process by which hazardous 
substances are removed from the environment 
to minimize threats to environmental and 
human health (Tilla and Blumberga, 2018). 
Remediation strategies should build on social, 
economic, environmental and sustainability 
issues. Sustainable remediation is important 
toprotect environmental and human health from 
a wide range of risks (e.g., Emenike et al. 2017; 
Tilla and Blumberga 2018; Ashraf et al. 2019; 
Huysegoms et al. 2019 and Ye et al. 2019). 

Environmental pollution has received 
considerable critical attention for many years 
and at all levels from people worldwide because 
it threatens human health. The remediation 
of this pollution includes bio- and phyto-
remediation. Both types of remediation deal 
with organic or inorganic pollutants in co-
contaminated sites in individualor collective 
forms. phytoremediation is a bio-process 
by which several plants can uptake, destroy, 
remove, stabilize and/or  trans fer  pollutants 
from soils and groundwater. phytoremediation 
has many processes or mechanisms including 
phytoextraction, phytostabilization, phytovolatilization, 
phytostimulation, rhizofiltration, phytodegradation, and 
phytodesalination (Rostami and Azhdarpoor, 
2019). The management of environmental 
pollution through phytoremediation using 
invasive plants has received a large amount of 
attentionfrom researchers (prabakaran et al. 
2019) as has plant growth regulators (Rostami 
and Azhdarpoor 2019), bioenergy plants 
(Hunce et al. 2019),and sustainable and eco-
environmental solutions (Ashraf et al. 2019 and 
Saxena et al. 2020).

Alfalfa hasconsiderable promisein the 
phytoremediation of contaminated sites due to its 
fast growth rate, high biomass production, deep 
and extensive root system, and potential to grow 
in many different soil types (Agnello et al. 2016). 
It hasalso potential in the phytoremediation ofa 
range ofcontaminantes, such as cadmium (Gu 

et al. 2018; Yang et al. 2019), copper (Chen et 
al. 2018a nd Ju et al. 2019), organic pollutants 
like polycyclic aromatic hydrocarbons (Alves 
et al. 2017 & 2018) and organochlorines (Teng 
et al. 2017 and Tu et al. 2017). The potential 
utilization of alfalfa in the phytoremediation 
of cadmium contaminated soils is presented in 
Table 3. 

Alfalfa plants have a strong root system and 
have good potential for use in phytoremediation. 
Many investigations reported on this advantage 
of alfalfa, in particular using transgenic 
plants that are tolerant to different stressful 
environments.

 Alfalfa Production under Climate Change
Climate change is a global problem 

that touches all human activities and 
impactsbiological systems (Hannah, 2020). 
Changing climate is increasingly recognized as a 
serious, worldwide public health concern (Tong 
et al. 2016). The agricultural field is considered 
one of the most important sectors, which may 
control by the climate and its factors (Upretyet 
al. 2019). Recently, a large body of literature has 
grown up around the impacts of climate change 
on agriculture. This literature touched on all 
agricultural issues including biodiversity (Filho 
et al. 2019), sustainability (Agovino et al. 2019), 
use efficiency of plant resources (Bhattacharya 
2019), agricultural vulnerability (Neset et al. 
2019), agricultural practices (Wagena and Easton, 
2018), global food security (Doelman et al. 2019; 
Yadav et al. 2019), crop production (Chen et al. 
2019), plant diseases and insects (Young et al. 
2019) and agricultural ecosystems (Choudhary 
et al. 2019). Other studies have addressedclimate 
change and its impacts onagro-ecological issues 
including the impact of rising atmospheric 
carbon dioxide oncrop production (Lemonnier 
and Ainsworth 2019 and Dass et al. 2019), the 
variability in climate andenergy systems (Emodi 
et al. 2019), and climate variability in the agro-
ecological zone (Aniah et al. 2019). The impacts 
of climate change, mitigation and its adaptations 
have also been reported in different countries 
and regions worldwide includingAustralia 
(Ireland and Clausen 2019), China (Wu et al. 
2019), Europe (Hernández-Morcillo et al. 2018; 
Lungarska and Chakir2018), India (Sapkota et al. 
2019), Italy (pietrapertosa et al. 2019), Malaysia 
(Tang 2019), Nepal (Shrestha and Dhakal 2019), 
pakistan (Hussain et al. 2018), Spain (pasimeni 
et al. 2019), and for 192 countries (Sarkodie and 
Strezov. 2019). It is worth mentioning that there 
are also concerns about the impacts of climate 
change on livestock.
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Alfalfa plants can grow as a perennial forage 
cropunder a range of climatic zones (Luo et 
al. 2019). It has high adaptability to different 
growing zone conditionsand high palatability for 
livestock with relatively high yields (Singer et 
al. 2018).Like all crops, the production of alfalfa 
is projected to change due to climate changes. 
These changes represent great constraints 
through typical abiotic and biotic sures on 
production. Common causes of climate change 
include rising sea level, changes in precipitation 
patterns,heat waves, and drought. These effects 
also are expected to escalate in their frequency 
and severity under the climate changes (Singer 
et al. 2018). Apart from changes in climate 
conditions, there are direct and indirect impacts 
of over-population on the global demand for 
alfalfa and other forage products for ruminants, 
whichare considered an important source offood 
(meat and dairy products)and animal products 
(i.e, leather) to meet human needs (Martin et 
al. 2017; Wilkinson and Lee 2018).To produce 
enough alfalfa to feed livestock populations, it 

TABLE 3 . Survey about using alfalfa plants in cadmium (Cd) phytoremediation 

The study conditions
Cd content in growth 

media
Remarkable results Reference

Seeds (var. Baghdadi) in pots, soil 
pH (7.5), for 3 weeks

Added Cd (as CdCl
2
): 

100 mg kg−1

Reduction of Cd in shoots inoculated 
with Rhizophagusirregularis (AMF)

Motaharpoor et 
al. (2019)

plastic pots filled with soil 
contaminated with Cd, plants 
harvested after 60 days

Cd content: 9.01 mg kg−1

Exogenous application of signaling 
molecules (H

2
S and NO) enhanced 

plant growth by reducing phytotox-
icity in Cd-contaminated soil

Fang et al. 
(2019).

pot experiments used seeds of 20 
alfalfa cultivars for 3.5 months 
growth period, soil pH: 6.83, 

Cd content: 50 mg kg-1

Under Cd stress, the content of free 
amino acid, proline and soluble 
protein were key to withstanding Cd 
toxicity in alfalfa.

Yang et al. 
(2019)

pot experiment, soil pH: 8.07, 
seeds grew for 90 days 

Cd content: 3 mg Cd 
kg−1 dry soil

Cd phytoextraction by alfalfa was 28 
g ha-1, adding 1.5 % (w/w) biochar 
enhanced plant growth 

Zhang et al. 
(2019)

Seeds (cv. Biaogan) germinated, 4 
day-old seedlings cultured in Hoa-
gland added 1.30 mM CH

4

The added solution 

containing 100 μM 

CdSO
4

Methane (CH
4
) may alleviate Cd ac-

cumulation, CH
4
 promoted reduction 

lipid peroxidation, H
2
O

2
 accumula-

tion under Cd stress

Gu et al. 
(2018)

Seeds (cv. Biaogan), seedlings 
pretreated with 10, 50, and 200 
μM melatonin, exposed to Cd 
stress for 3 days

Seedlings were exposed 
to 0, 50, 100 and 200 
μM CdSO

4

pretreatment with exogenous mela-
tonin may increase the content of 
melatonin in seedlings and alleviates 
Cd stress

Gu et al. 
(2017)

is urgent that new novel approaches, which may 
guarantee higher yields under harsher conditions 
including marginal lands and extreme climates, 
be developed. The production of alfalfa was and 
still is a major area of interest under changing 
climateas follows:

(1) Alfalfa productivity is projected to 
decrease 15-35 % in sub-Saharan Africa due to 
climate change. Thisdecline will subsequently 
negatively impact the production of livestock. 
The impact of “forage-legume intercropping 
technologies” is one adaptation to climate change 
in Africa and its effects on the “mixed crop-
livestock systems” (Hassen et al. 2017),

(2) Stresses due to climate change may 
decrease the fitness, fertility and longevity of 
grazing animalsunder drought and/or heat waves in 
arid and semi-arid rangelands. This impact mainly 
depends on the vulnerability of livestock to climate 
change, which varies based on many factors such 
asthe animal species, nutritional status, life stage 
and genetic potential (Hassen et al. 2017), 
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(3) Many impacts can be expected on alfalfa 
forage crops due to changing climate, such 
as changes in forage growth, quality, andthe 
content of carbohydrates and nitrogen (Hassen 
et al. 2017), 

(4) The photosynthetic process and crop 
yield may increase with elevated CO

2
 levels, 

whereas the response of alfalfa crop involves the 
decreaseof crop yield forthe long-term exposure 
to CO

2
due to crop acclimation to elevated CO

2
 

concentrations or the down-regulation process 
(Kulkarni et al. 2018),

(5) There is a projected 25% increase in total 
non-structural carbohydrates or the primary 
photosynthates and an 8% N content decrease 
in alfalfa plant tissuesunder elevated CO

2
 levels 

(Dumont et al. 2015),

(6) Alfalfa forage quality and yield under 
elevated CO

2
 and temperatures were investigated 

by Baslam et al. (2012). They found that elevated 
carbon dioxide and temperature conditionsmay 
enhance fiber content, reducing crude protein 
and the digestibility of alfalfa forage. Due to the 
elevated CO

2
, increased total mineralnutrient 

uptake alfalfa yield has been observed (Sanz-
Saez et al. 2012),

(7) Total chlorophyll content in alfalfa 
leaves under elevated CO

2
 conditions did not 

show a significant increase compared with 
ambientconditions (Al-Rawahy et al. 2013; Ksiksi 
et al. 2018),

(8) Ksiksi et al. (2018) studiedalfalfa 
production under water stress with CO

2
 

enrichment under greenhouse conditions. They 
reported that it is possible to reduce the amount 
of irrigation water used without a reduction in 
the forage yield of alfalfa if this production is 
coupled with CO

2 
enrichmentunder greenhouse 

conditions,and

(9) Additional studies have investigated 
elevated CO

2
 and its impact on alfalfa production 

under different conditions (e.g., Fischinger et al. 
2010; Farfan-Vignolo and Asard 2012; Sanz-Sáez 
et al. 2013; Erice et al. 2014; Goicoechea et al. 
2014; Irigoyen et al. 2014; Ariz et al. 2015).

Climate change is a major challenge facing 
our world and without an urgent global strategy, 
including measures to mitigate and adapt to 
this serious threat, more and more unexpected 

extreme events will sweep the world. The effects 
of climate change do not just include alfalfa 
yields and nutritional value but also the impact 
on livestock and its health. There are positive and 
negative sides to the changing climate. The elevated 
atmospheric CO

2
 level enhances photosynthesis in 

some cultivated crops (C
3
), but the adverse climatic 

circumstances can exertabiotic stresses (e.g., 
drought, heat, etc.) on alfalfa crops, which has 
negative impacts on the quality and quantity of the 
yield. Atmospheric CO

2
 is projected to be 550 and 

700 μmol mol−1 by 2050 and 2100, respectively 
with the current rate of increase at about 1.5 μmol 
mol−1 year−1 (Ariz et al. 2015).

Conclusion                                                                                         

Alfalfa is a valuable food and feed crop for 
humans and animals. This crop can perform vital 
functions starting with green biomass and silage 
production for livestock and sprouts for human 
consumption. Alfalfa alsocan grow and produce 
desirable yields in stressful environments. 
Apart from the strong root system of alfalfa, the 
cultivated plants can grow well under abiotic 
stresses and in marginal lands.The histological 
approach of alfalfa is a good indicator for a sound 
understanding of the growth environments, in 
particular stressful conditions. Therefore, further 
anatomical investigations are needed concerning 
the production of alfalfa under changing 
environments.There are still some open questions 
concerning the productivity of alfalfa in 
particular under stressful conditions. Regarding 
different applications of alfalfa particularly for 
human nutrition, the current status of alfalfa 
research needs more investigations. What traits 
are important to improve the alfalfa resilience to 
climate-change or global warming. The derived 
materials, which produce from alfalfa are needed 
to investigate under cultivation of horticultural 
and agricultural crops.
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