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Introduction                                                                         

Production of high yield from crop plants 
depends mainly on the availability of high quality 
soil, water and other environmental conditions 
including temperature and light (Hakeem 2015; 
Meena et al. 2017; van der Laan et al. 2017). Any 
deviation in these conditions will lead to adverse 
effect on plant productivity at different levels 
started from mild decline in productivity reaching 
to classification of affected region as a marginal 
(Daryanto et al. 2017; Donfouet et al. 2017; He 
et al. 2017). In addition, climate changes and 
man-made interventions lead to sharp decline 
in fertile soil and suitable conditions for food 
crop production (Khan and Akhtar 2015; Chen 
et al. 2017). Also traditional methods used for 
irrigation, fertilization and other agricultural 
processes may increase this problem due to the 
accumulation and uncontrolled transformation 

of added materials (Bellarby et al. 2016; van 
der Laan et al. 2017). One of the solutions for 
this problem is the use of new technologies in 
irrigation and fertilization and search for less 
toxic forms for plant nutrition. On the other hand, 
the development of new strains withstands abiotic 
stresses is required. Natural nanoparticles are a 
native component of biological systems (nanoclay, 
many chemicals derived from soil organic matter, 
lipoproteins, exosomes, magnetosomes, viruses, 
ferritin) which have diverse structures with 
wide-spectrum biological roles (Li et al. 2013; 
Hedayati et al. 2016). Therefore, nanotechnology, 
a new emerging and fast growing science can 
help in ameliorating most of these stress factors 
throw different mechanisms including antioxidant 
defense system and providing less toxic and more 
efficient fertilizers (Zuverza-Mena et al. 2016). 

Many plant stresses have been reported by 
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several researchers including abiotic and biotic 
stress (e.g., Wani et al. 2016; Abiri et al. 2017; 
Calanca 2017). Concerning the plant abiotic 
stresses, they include salinity, drought, flooding, 
chilling, freezing, ultraviolet radiation, etc, which 
causes a great loss in crop production worldwide 
(Wani et al. 2016; Li et al. 2017). Some 
distinguished books about plant abiotic stress 
have been published by Springer such as Hirt and 
Shinozaki (2004), Rai and Takabe (2006), Khan et 
al. (2008), Pareek et al. (2010), Ahmad and Prasad 
(2012), Fritsche-Neto and A. Borém (2012), Khan 
et al. (2012), Khan et al. (2015), Pandey (2015), 
Al-Khayri et al. (2016) and Srinivasa Rao et al. 
(2016). Furthermore, recent studies also have 
been published including different cases of plant 
abiotic stress (e.g., Rossini et al. 2016; Sah et al. 
2016; Asensi-Fabado et al. 2017; Li et al. 2017; 
Mudalkar et al. 2017; Wang et al. 2017). Due to 
the multiple abiotic stresses and the increasing 
chances of global climate change, an urgent need 
is requested for mitigation and adaptation of these 
plant abiotic stresses (Grover et al. 2016; Wani et 
al. 2016). Therefore, the investigation of different 
effects of abiotic stresses on plant growth and 
development is crucial issue at different levels 
including biochemical, physiological and 
molecular levels (Wani et al. 2016). Different plant 
mechanisms in counteracting the abiotic stresses 
and maintaining their growth should be a great 
significance. The using of nanomaterials is an 
emerging solution among the accepted solutions 
of plants towards abiotic stresses (Hatami et al. 
2016; Reddy et al. 2016; de la Rosa et al. 2017; 
Khan et al. 2017).

Due to their unique characteristics, 
nanomaterials already have been used in several 
applications including medicinal, industrial and 
agricultural sectors (Servin and White 2016; 
Zhang et al. 2016; Khan et al. 2017; Zuverza-
Mena et al. 2017). Concerning the agricultural 
application of nanomaterials, there is an 
increasing and unlimited uses in agriculture and 
food systems including nanofertilizers (Tarafdar 
et al. 2014; Chhipa and Joshi 2016; Dubey 
and Mailapalli 2016), nanopesticides (Chhipa 
and Joshi 2016; Dubey and Mailapalli 2016), 
soil nano-reclaimants (Patra et al. 2016; Floris 
et al. 2017), nanosensors for nano-farming 
(Honeychurch 2014; Chhipa and Joshi 2016; 
Dubey and Mailapalli 2016; Yılmaz et al. 2017), 
soil and water nanoremediators, etc. (Ingle et al. 
2014; Gomes et al. 2016; Gil-Díaz et al. 2016a, b; 
Gil-Díaz et al. 2017). These nanomaterials may 

help in reducing the consumption of different 
agro-chemicals (fertilizers, pesticides, etc.) 
leading to minimizing the environmental pollution 
and hence the sustainable agriculture (Dwivedi et 
al. 2016; Khan et al. 2016; Panpatte et al. 2016; 
Pulimi and Subramanian 2016). 

Regarding the relationship between 
nanomaterials and plant stress, many studies have 
been published explaining more details about this 
relation (e.g., Banerjee and Kole 2016; Kole et al. 
2016; Nair 2016; Zaytseva and Neumann 2016; 
Khan et al. 2017). The main distinguished effect 
of plant abiotic stress is to cause in general the 
oxidative stress (Servin and White 2016). Under 
this oxidative stress, nanomaterials may help 
stressed-plants in enhancing their defense system 
including the antioxidative enzymes mainly 
peroxidase, superoxide dismutase and catalase 
(Patra et al. 2016). On the other hand, these 
nanomaterials under higher concerntration may 
cause also oxidative stress on plants (Li  et al. 2015; 
Zhang et al. 2015; Saharan and Pal 2016; Zaytseva 
and Neumann 2016) due to the accummulation of 
reactive species (oxygen and nitrogen) leading 
to a damage in proteins, nucleic acids and cell 
membrane (Khan et al. 2017). Therefore, the 
interaction between nanomaterials and plants 
under abiotic stress should be investigated under 
different levels including the physiological, 
biochemical and cellular levels. Hence, the aim of 
this work was to focus on the plant abiotic stress 
and how can nanomaterials be used in enhancing 
growth of stressed plants and their behavior also 
under the stress from nanomaterials. The roles of 
nanomaterials in terrestrial environments will be 
also highlighted.

Abiotic stresses and plants: problems and 
challenges 

Under normal conditions, all living organisms 
can ideally grow and develop but under undesirable 
conditions several problems can happen. These 
unfavourable conditions include stresses and/
or environmental constraints. The plant stresses 
could cause losses in crop production. Thus, crop 
productivity faces a lot of environmental stresses 
including biotic and abiotic ones (Wani et al. 
2016; Abiri et al. 2017). Concerning the abiotic 
stresses, they include salinity, drought, heavy 
metals, flooding, chilling, freezing, heat, ozone 
and ultraviolet radiation. Whereas, the biotic 
stress includes different pathogens like bacteria, 
virus, fungi, etc (Abiri et al. 2017; Calanca 2017; 
Lu et al. 2017; Khan et al. 2017). Therefore, 
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crucial important investigations are needed to 
know how abiotic stresses affect plant growth 
and its development at different levels including 
the physiological, biochemical and molecular 
studies (Cramer et al. 2011; Hasanuzzaman et 
al. 2013; Wani et al. 2016). Moreover, in order 
to produce more food and feed to overcome the 
ever increasing human populations, it should be 
prevented any crop losses as possible. So, the 
study of plant abiotic stress recently has gained 
unprecedented importance (Sah et al. 2016).

Several investigations have been carried out 
regarding plant abiotic stresses including drought 
(Aroca 2012; Hossain et al. 2016a, b; Kaushal 
and Wani 2016; Xuan et al. 2016; Aslam et al. 
2017; Lu et al. 2017; Nxele et al. 2017; Sheikh 
Mohammadi et al. 2017), salinity (Kaushal and 
Wani 2016; Xuan et al. 2016; Khan et al. 2017; 
Jiang et al. 2017; Nxele et al. 2017), heavy metals 
(Lemtiri et al. 2016; Shahid et al. 2017), flooding 
(Kamal and Komatsu 2016; Loreti et al. 2016; 
Azizi et al. 2017), chilling (Xu et al. 2016; Ding 
et al. 2017), heat (Ohama et al. 2016; Buchner et 
al. 2017; Prasad et al. 2017), ozone (Alves et al. 
2016; Łabanowska et al. 2016; Li et al. 2016) and 
ultraviolet radiation (Pérez et al. 2016; Ren et al. 
2016; Verdaguer et al. 2017). 

It is well known that, plants may be exposed 
to different combinations of abiotic and biotic 
stresses at the same time under field conditions. 
Concerning stress combinations, it is reported 
about common stress combinations including 
drought and salinity, salinity and heat, drought and 
pathogen (Suzuki et al. 2014; Rossini et al. 2016; 
Li et al. 2017; Nxele et al. 2017). This enforced 
many researchers recently to focus on different 
interactions among combined abiotic and biotic 
stress under molecular and other levels (Pandey 
et al. 2015; Ramegowda and Senthil-Kumar 
2015; Nankishore and Farrell 2016; Sinha et al. 
2016). Therefore, different tailored molecular 
and physiological responses by plants have been 
recorded under these combined stresses. These 
responses may occur in case of plants exposed to 
simultaneous stresses but can not deduce in case 
of different individual stresses (Ramegowda and 
Senthil-Kumar 2015; Pandey et al. 2015). Thus, 
the responses of plants to abiotic and biotic stresses 
are dynamic and complex. Concerning multiple 
and integrated omics studies, it could be used 
them in discovering new areas of interactions and 
regulation as well as response of stress kinetics 
and identification of multiple response phases 
(Suzuki et al. 2014; Rossini et al. 2016). 

Among abiotic stresses salinity and drought 
represent a great threat to crop production all 
over the world. This threat will be accelerated 
in frame of the global climate change as well as 
the frequency and severity of different stresses. 
Furthermore, these abiotic stresses including 
drought and salinity may cause a loss in crop 
production about 50 % (Kaushal and Wani 
2016; Nahar et al. 2016; Nxele et al. 2017). On 
the other hand, it is estimated that, the annual 
losses in agricultural production resulting from 
the salt-affected lands are approximately US$ 
12 billion (Chakrabarty et al. 2016). Several 
plants can synthetize and then accumulate 
osmolytes or osmoprotectants (Table 1) including 
amino acids (proline, glycine, glutamine, etc.), 
quaternary ammonium compounds (e.g., glycine 
betaine, β-alanine betaine, proline betaine), 
tertiary sulphonium compounds (dimethyl 
sulphoniopropionate or DMSP), sugars (sucrose, 
trehalose, fructose, maltose, etc.) and sugar 
alcohols (pinitol, mannitol, myoinositol, ononitol 
and sorbitol) under stress conditions (Fig. 1; 
Suprasanna et al. 2016; Vicente et al. 2016).

Therefore, under drought and salinity stresses 
plants have a hormonal regulation system 
including abscisic acid (ABA), salicylic acid 
(SA), melatonin (N-acetyl-5-methoxytryptamine) 
and nitric oxide (NO). These previous molecules 
are important in regulating plant status during 
drought, controlling the opening of stomata, 
photorespiration and antioxidant defenses (Li 
and Liu 2016). A strong relation among drought, 
the global climate changes and greenhouse 
emissions leading to an expansion in the arid 
land mass as well as great damages to agriculture 
due to elevated temperatures (Xue et al. 2016). 
So, the plant abiotic stress is one of the most 
important challenges facing several countries 
all over the world. The main effect of drought 
and salinity stresses can be represented in the 
plant metabolic functions and maintenance of 
turgor pressure as well as the disrupt the redox 
balance by aggravating the production of reactive 
oxygen or nitrogen species causing oxidative 
injury (Chakrabarty et al. 2016). Therefore, 
great problems and challenges concerning plants 
abiotic stresses face the agricultural production, 
hence emerging and novel solutions should be 
addressed. One of the most important solutions is 
to use the nanomaterials in alleviating the harmful 
effects of these stresses (Fig. 2). 
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TABLE 1. List of some protective effects of different exogenously applied osmoprotectants under salt stress (NaCl) 
to rice crop (Oryza sativa L.)

Rice variety or 
cultivar

Salinity and protectant 
doses (duration) Protective effects Reference

Rice variety Giza 
177 and Giza 178

30 and 60 mM NaCl, 25 
mM trehalose (12 h)

High antioxidant enzymes activity in shoots of 
salinity treated Giza 178 more than Giza 177; 
trehalose stimulated the activities of CAT, POX, 
SOD

Abdallah et al. (2016)

Rice cv. BRRI dhan 
49 and cv. BRRI 
dhan 54

150, 300 mM NaCl and 5 
mM glycinebetaine (48 h)

Enhanced antioxidant system; reduction of 
oxidative stress parameters (lipid peroxidation and 
H2O2) and lipoxygenase activity; improved MG 
detoxification system

Hasanuzzaman et al. 
(2014)

Rice cv. BRRI dhan 
49 and cv. BRRI 
dhan 54 

150, 300 mM NaCl and 5 
mM proline (48 h)

Increased contents of AsA and GSH, ratio of GSH/ 
GSSG and activities of APX, MDHAR, DHAR, 
GR, GPX, CAT; improved oxidative stress and MG 
toxicity tolerance

Hasanuzzaman et al. 
(2014)

Rice cv. KDML105 100 mM NaCl and 10 mM 
proline (6 days)

Increased FW and DW, reduced Na+ / K+ ratio, 
increased endo-proline; pregulated transcription of 
genes encoding several antioxidant enzymes

Nounjan et al. (2012)

Rice cv. KDML105 100 mM NaCl and 10 mM 
trehalose (6 days)

Increased FW and DW, reduced Na+/K+ ratio and 
endo- proline Nounjan et al. (2012)

Rice cv. KDML105
170 mM NaCl and 5, 10 
mM sorbitol 5, 10 mM 
trehalose (24 h)

Enhanced growth, reduced H2O2 and lipid 
peroxidation (indicated by MDA) contents and 
electrolyte leakage

Theerakulpisut and 
Gunnula (2012)

Abbreviations: ascorbic acid (AsA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), 
peroxidase (POD), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase 
(GR), glutathione peroxidase (GPX), glutathione-S-transferase (GST), oxidized glutathione (GSSG), malondealdehyde 
(MDA), methylglyoxal (MG), fresh and dry weight (FW and DW). Osmoprotectants are small, non-toxic molecules at low 
concentrations, efficiently maintain osmotic balance and stabilize proteins and membranes under salt, drought or other stress 
conditions (Nahar et al. 2016)

Fig. 1. Different plant defence mechanisms induced in response to abiotic stress, whereas plant enzymatic 
antioxidants include catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione 
peroxidase (GPX), superoxide dismutase (SOD), polyphenoloxidase (PPO), glutamic oxaloacetic 
transminase (GOT), peroxidase (POD), and phytohormones include abscisic acid (ABA), gibberellic acid 
(GA), jasmonic acid (JA), salicylic acid (SA), brassinosteroids (BR) (adapted from Sengupta et al. 2016)
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Nanomaterials and agroecosystems                     

Due to the several unique physicochemical 
properties of nanoparticles or nanomateriales, 
nanotechnology has already penetrated many 
fields for great novel applications in the agriculture 
sector. These physicochemical properties include 
a very high reactivity, high surface area, tunable 
pore size and particle morphology (Belal and El-
Ramady 2016; Mani and Mondal 2016; Panpatte 
et al. 2016; Servin and White 2016; Shalaby et 
al. 2016). Concerning the agricultural sectors, the 
applications of nanotechnology have been used 
in several fields including the fertilization sector 
(Mastronardi et al.2015; Chhipa 2016; Chhipa 
and Joshi 2016; Dubey and Mailapalli 2016; 
Mani et al. 2016; Monreal et al. 2016; Panpatte 
et al. 2016), plant protection (Bhattacharyya et al. 
2016; Nuruzzaman et al. 2016; Saharan and Pal 
2016; Li et al. 2017), food sector (Ghanbarzadeh 
et al. 2016; Eleftheriadou et al. 2017; Grumezescu 
2017; Li et al. 2017), precision farming (Gouma 

et al. 2016; Chhipa and Joshi 2016; Neethirajan 
2017), remediation of terrestrial environments 
(Belal and El-Ramady 2016; Gil-Díaz et al. 
2016a, b; Gomes et al. 2016; Patra et al. 2016; 
Gil-Díaz et al. 2017), etc. These nanoparticles or 
nanomaterials can enhance the ability of plants to 
uptake nutrients, therefore increase the fertility of 
soils as well as crop production. Moreover, salt-
affected soils management also can be achieved 
using these nanomaterials (Patra et al. 2016). 

Agroecosystem environments include 
soils, sediments, plants, water, air etc. These 
environments may suffer from several stresses 
even abiotic or biotic. These stresses represent the 
vital pressure or main problem in deterioration 
of the agricultural production. There are many 
case studies regarding these stresses such as salt-
affected soils, polluted soils and water, global 
climate changes, marginal lands, wetlands, 
bushfires and agroforests, etc (Abhilash et al. 
2016; Amini et al. 2016; Bhardwaj et al. 2016). 

Fig. 2. Possible sources of nanoparticles (NPs) in the soil and their effects on growth and physiology of plants. 
Under stress from nanparticles, a decrease in grain yield and its quality may be happened due to several 
actions from plants such as alteration in root, shoot, growth and physiology as well as some metabolic 
pathways of whole plant (ROS: reactive oxygen species; adapted from Rizwan et al. 2017)
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The previous agro-environments have multiple 
stresses like salt-affected soils (e.g., salinity and 
drought stress), polluted lands (e.g., oxidative 
stress), global climate changes (e.g., drought, 
flooding and salinity), etc (Khan et al. 2016; 
Pulimi and Subramanian 2016; Rossi et al. 
2016; Singh and Lee 2016; Venkatachalam et al. 
2016; Joo and Zhao 2017; Rizwan et al. 2017). 
Concerning salinity, it is one of the most serious 
environmental challenges that cause great decline 
in yield and development of plant species. In fact, 
salinity is one of the major yield limiting factors 
for crop plants mainly in arid and semiarid regions 
of the world (Munns 2005). 

It is well known that, a great threat to land 
productivity can be posed due to the presence 
of soluble salts in the waters and soils including 
surface water and groundwater. A decline in 
agricultural productivity also can be observed 
because of the toxic effect of high salt content 
to plants, restricting plant water uptake and 

preventing uptake of plants essential nutrients. 
Furthermore, salt affected soils characterized by 
many problems including the high Na content, 
poor porosity, waterlogging and loss of nutrients 
as well as the hydraulic constraints. Several 
approaches to manage salt-affected marginal 
lands have been used including the chemical 
reclamation and the nanomaterials (Patra et al. 
2016). Therefore, it could be used nanomaterials 
or nano-reclaimants in developing and reclamation 
salt-affected soils. These nano-reclaimants (e.g., 
nano gypsum, nano calcium and magnesium 
compounds, etc.) are more efficient and readily 
manufacturable as well as enhancement hydraulic 
characteristics and soil stability (Mukhopadhyay 
and Kaur 2016; Patra et al. 2016).On the other 
hand, some studies have been focused on the 
using of nanomaterials in handling with salt-
affected soils (Patra et al. 2016). Therefore, it 
could be reclaimed the salt-affected soils using 
these previous nano- reclaimants including many 
advantages as presented in Table 2.

TABLE 2. Different beneficials resulted from nanotechnology intervention in salt-affected soils

Processes Details

Reducing salt 
concentration in 
soil solution

Enhancement Na removal, soil stability and hydraulic characteristics using polymeric carriers 
in nano-reclaimants via clay binding processes 

Improving soil 
drainage

Removing Na+ from soil solution leads to improve crop growth by improving soil structure 
in subsurface and sub soils using nano-Ca2+, nanoferrites as well as biofriendly nanopolymers

Replacing Na+ by 
Ca2+

Nano-Ca2+, nano-Mg2+ and nano-K+ can be used in removing Na+ from soil because of the high 
selectivity and spontaneous reactions (negative ΔG0) for Ca2+ over Na+ for all clay minerals

Changing 
carbonate 
chemistry

Capping/encapsulating Na2CO3 with nanopolymers and nano-composites selectively may 
yield products which are insoluble and may be leached through preferential flows as well as 
formation of nanoorganic carbonates could be another possibility

Prevention of 
Na2CO3 formation

Nanomaterials including nanocalcium carbonates, nano-Ca2+, nano-Mg2+, nano-K+ and nano-
iron oxides may be used in preventing Na2CO3 formation in soils

Addition of K+ It could be used some nanomaterials like nano-K+ in clay minerals like illite in accelerating ion 
exchange reactions (Ca2+, Mg2+ and Na+) to reduce exchangeable sodium saturation 

Solubilizing of 
CaCO3

Calcium carbonate could possibly be solubilized by the application of nano-Ca2+, nano-Mg2+ 
and nano-Fe oxides

Precipitation Nanopolymers and nano-organic substances may be used in forming complexes or insoluble 
salts with harmful ions and precipitated

Common ion effect Nano-iron oxides, nano-Ca2+ and nano-Mg2+ may be applied to counter adverse effect of Na+ as 
a well-known phenomenon

Source: Mukhopadhyay and Kaur (2016); Patra et al. (2016).
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Therefore, it could be concluded that, 
nanomaterials have a great impact on different 
agroecosystems including both positive and 
negative effects. Concerning the negative effects, 
nanomaterials may cause many toxic effects 
on plants, soil microbes, or aquatic organisms. 
Whereas, the positive side for nanomaterials 
includes using these materials in remediation both 
polluted soil and water, in delivery nanonutrients 
or other substances, in alleviation the damage 
effects of abiotic stresses on plants, etc. So, a wise 
and sustainable application of nanomaterials in 
agroecosystems should be used.

Role of nanomaterials in ameliorating plant 
abiotic stresses

It is reported that, nanomaterials can be used 
for sustainable crop production, in reducing 
loss of nutrients, in suppressing of diseases 
and then enhancing the yields (Nair 2016; 
Khan et al. 2017). It is also documented that, 
nanomaterials have several benefits including 
enhancement of plant growth stages starting from 
seed germination, seedling vigor, initiation and 
growth of roots, and photosynthesis reaching to 
flowering under low concentrations (Banerjee 
and Kole 2016; Kole et al. 2016). Concerning 
the protection of plants against the oxidative 
stress, nanomaterials may behave or mimic the 
role of antioxidative enzymes like peroxidase, 
superoxide dismutase and catalase (Zaytseva 
and Neumann 2016). Phytotoxicity may happen 
under higher concentration of nanomaterials as a 
result of the generation of reactive oxygen species 
and accumulation of these reactive species may 
damage both of membrane of cells and proteins 
as well as nucleic acids (Khan et al. 2017). Many 
effects of nanomaterials on plants under abiotic 
stress have been reported as presented in Table 3 
and Fig. 3, whereas a survey for some beneficial 
and harmful effects for nanomaterials tabulated 
in Table 4. It could represent some nanomaterials 
and their roles in alleviating the abiotic stress such 
as nano-silica, nano silver, nano zinc, and nano 
titanium as follows:

Nano- silica (nano- SiO2)
Naturally, plants contain silicon (Si) in 

considerable concentrations, ranging from 1 to 
10% or higher of the dry matter. This fluctuation 
in Si levels in different plant species may be 
attributed to the variations in Si uptake ability of 
the roots (Parveen and Hussain 2008). Silicon, 
being a beneficial element provides significant 
benefits to plants at various ionic compositions. 

Nano-Si plays an important role in the mitigation 
of salt stress. Many reports about the ability of 
nano-Si to counteract the negative effects of salt 
on plant growth rates were recorded (e.g., Wang et 
al. 2010; Wang et al. 2011). So, the use of nano-
silica can be more efficient than the large particles 
and facilitate its uptake through plant root system. 
Also, nano-silica affect xylem humidity, water 
translocation and enhance turger pressure, thus 
leaf relative water content and water use efficiency 
will be increased. It is reported that, nano-SiO2 
particles absorbed better and faster than micro-
SiO2, Na2SiO3, and H4SiO4 when applied on seeds 
or roots of maize plants (Suriyaprabha et al. 2012).

On the other hand, silicon deposition in 
the tissues helps to mitigate water stress by 
reducing the rate of transpiration, enhancing 
photosynthesis process by improving light 
receiving efficiency through keeping the leaf rigid 
and erect, preventing chlorophyll degradation 
and increasing tolerance insect attack (Ali et al. 
2012; Siddiqui et al. 2014). Silicon also is known 
to reduce uptake of Na+ by improving K+: Na+ 
ratio and ameliorate the toxicity of other heavy 
metals. Almutairi (2016a) studied the effect of 
nano-silicon application on the expression of salt 
tolerance genes in germinating tomato seedlings 
under salt stress. These results suggest that 
N-Si plays an important role in improving seed 
germination and growth in saline environments. 
Siddiqui and Al-Whaibi (2014) revealed that, 
application of 8 g L-1 of nano-SiO2 significantly 
enhanced tomato seed germination potential and 
improved percent seed germination, average 
germination time, seed germination index, vigor 
index, seedling fresh weight and dry weight.

Nano-silicon is responsible for a number of 
improvements which lead finally to enhancement 
plant growth and productivity under both salinity 
and drought. This includes nutrient elements 
homeostasis, modification of gas exchange 
attributes, osmotic adjustment by regulating the 
synthesis of compatible solutes, stimulation of 
antioxidant enzymes and gene expression in 
plants (Qados 2015). Nano-Si also enhances plant 
growth under heavy metal stress. The suggested 
mechanisms include reducing active heavy metal 
ions in growth media, chelation and stimulation 
of antioxidant systems in plants, complexation 
and co-precipitation of toxic metals with Si, 
compartmentation and structural alterations in 
plants and regulation of the expression of metal 
transport genes. However, these mechanisms 
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might be associated with plant species, genotypes, 
metal elements, growth conditions, duration 
of the stress imposed and so on. Therefore, the 
generalization of Si-mediated alleviation of metal 
toxicity should be therefore made with caution 
(Adrees et al. 2015). Various studies describe the 
ameliorative effect of Si application on plants 
under heavy metals or dangerous toxic elements, 
like Al, Cd, Pb, Cr or Cu (Shen et al. 2014; Keller 
et al. 2015). Liu et al. (2015) indicated that nano-
Si is more efficient than common Si in terms 
of alleviation of the toxic effects of lead (Pb) 
on rice growth, it prevent Pb transfer from rice 
roots to the shoot system of the plant and reduce 
Pb accumulation in grains, especially in high-Pb 
accumulating- cultivars and the soils with high 
levels of Pb pollution.

Silver nanoparticles (AgNPs)
The possibility of application of silver 

nanoparticles in improvement of plant productivity 
was assayed by many authors (e.g., Shelar and 
Chavan 2015), plant growth (e.g., Kavehet al. 2013; 
Vannini et al. 2013) and enhancing photosynthetic 
quantum efficiency and chlorophyll content (Sharma 
et al. 2012; Hatami and Ghorbanpour 2013). Silver 
nanoparticles are also used as antimicrobial agents 
to manage plant diseases (Lamsal et al. 2011). 
Application of silver nanoparticles has been found 
quite effective in improving resistance against 
salinity during germination of fennel (Ekhtiyari 
et al. 2011) and cumin (Ekhtiyari and Moraghebi 
2011). It is reported that exposure to AgNPs 
alleviated the adverse effects of salt stress and 
improved the germination, root length and seedling 
fresh and dry weight of tomato seeds under NaCl 
stress (Almutairi 2016b).

Fig. 3. Different kind of abiotic stresses on plants including drought, salinity, cold, heat, flooding and heavy metals 
as well as the role of nanomatetials. Different behavior of plants under these stresses can be noticed due to 
nanomaterials
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TABLE 3. Alleviating effects of nanomaterials (NMs) on some abiotic stresses including drought, salinity and 
flooding stresses in plants

Nanomaterial 
(diameter) Plant species Different effects Ref.

Drought stress

Nano TiO2 Wheat (Triticum aestivum L.) Increasing growth, yield, gluten and starch content of wheat (1)

Nano TiO2 Flax (Linum usitatissimum L.)
Enhancing chlorophyll and carotenoids content, improving flax growth 
and yield attributes, decreasing H2O2 and malondialdehyde (MDA) 
content

(4) 

Nano TiO2 Basil (Ocimum basilicum L.) Improving the negative effects of drought stress on basil plants (5)

Nano Fe Carthamus tinctorius Reducing impact of drought and improving yield of safflower (3)

Nano Zero 
valent Fe Arabidopsis thaliana L.

Activation of plasma membrane H+-ATPase, stomatal opening, 
increasing Chl content and plant biomass, maintaining normal drought 
sensitivity, increasing CO2 assimilation in thale cress plants

(7)

Nano SiO2 Crataegus sp.
A positive significant effect on photosynthetic rate, stomatal 
conductance and plant biomass, non-significant effect on chlorophyll 
and carotenoid content

(6)

Nano ZnO Soybean (Glycine max L.) Increasing germination percentage and germination rate, decreasing in 
seed residual fresh and dry weight of soybean (2)

Salinity stress

Nano SiO2
Tomato (Lycopersicum 
esculentum L.)

Lower levels of nano-SiO2 enhanced seed germination potential, root 
length and dry weight. Higher levels suppressed seed germination 
characteristics

(8)

Nano SiO2
Cherry tomatoes (Solanum 
lycopersicum L.)

Alleviating the effect of salinity on fresh weight, chlorophyll content, 
photosynthetic rate and the leaf water content (9)

Nano SiO2 Basil (Ocimum basilicum L.) Increasing fresh and dry weight, chlorophyll content and proline 
content (10)

Nano SiO2 Lens (Lens culinaris Medik.) Enhancing seed germination and seedling growth (11)

Nano SiO2

(10 nm)
Squash (Cucurbita pepo L.)

Improving seed germination and growth characteristics, reduced 
levels of MDA, H2O2 and electrolyte leakage, reducing chlorophyll 
degradation and oxidative damage, enhancing photosynthetic 
parameters antioxidant enzymes

(12)

Nano SiO2 Faba bean (Vicia faba L.) Enhancing seed germination, increasing growth, activities of 
antioxidant enzymes relative water content and total yield (13)

Nano SiO2 

(20 nm)

Tomato (Solanum 
lycopersicum L.)

Up-regulating the expression profile of four salt stress genes and six 
genes were down-regulated, suppressing the effect of salinity on seed 
germination rate, root length and fresh weight

(16)

Nano ZnO and 
Fe3O4

Moringa peregrina
Reduction in Na+ and Cl- contents, increasing N, P, K+, Ca2+, Mg2+, 
Fe, Zn, total chlorophyll, carotenoids, proline, carbohydrates, crude 
protein and enzymatic and non-enzymatic antioxidants

(14)

Nano ZnO Sunflower (Helianthus annuus 
L.)

Increasing growth, net CO2 assimilation rate, sub-stomatal CO2 
content, chlorophyll content, Fv/Fm and Zn content and decreasing 
Na+ content in leaves

(15)

Flooding stress

Nano Ag Crocus sativus Blocking of ethylene signaling, promotion of root growth (17)

Nano Al2O3 Soybean (Glycine max L.) Regulation of energy metabolism and cell death, improved growth (18)

Nano Ag Soybean (Glycine max L.) Reducing generation of cytotoxic byproducts of glycolysis, increasing 
the abundance of stress-related proteins, enhancing seedling growth (19)

References: (1) Jaberzadeh et al. (2013), (2) Sedghi et al. (2013), (3) Zareii et al. (2014), (4) Aghdam et al. (2015), (5) Kiapour et al. 
(2015), (6) Ashkavand et al. (2015), (7) Kim et al. (2015), (8) Haghighi et al. (2012), (9) Haghighi and Pessarakli (2013), (10) Kalteh 
et al. (2014), (11) Sabaghnia and Janmohammadi (2014), (12) Siddiqui et al. (2014), (13) Qados and Moftah (2015), (14) Soliman 
et al. (2015), (15) Torabian et al. (2016), (16) Almutairi (2016), (17) Rezvani et al. (2012), (18) Mustafa et al. (2015a), (19) Mustafa 
et al. (2015b) 

Source: from Khan et al. (2017)
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Zinc oxide nanoparticles (nano-ZnO)
Zinc (Zn) is among the important key 

micronutrient required for the optimum growth 
and development of plants which carries vital 
metabolic reactions within the plants to promote 
growth and development. Despite its role in the 
growth and development of plants, Zn also plays 
a vital role in reducing toxic heavy metals uptake 
by plants, thereby prevents plants from the heavy 
metal toxicity such as Cd (Baybordi 2005). Zinc 

also has an important role in plants survival under 
environmental stress conditions, where it plays 
a role in enhancing or preparing the plants to 
tolerate drought stress (Cakmak 2008). It plays a 
considerable role in stomatal regulation owing to 
its ability to maintaining membrane integrity and 
retaining potassium content of the cells as well as 
a role in plant water relations (Khan et al. 2004). 
In an experiment on chickpea, it is indicated that 
Zn deficiency reduced the plant ability to adjust 

TABLE 4. The beneficial effects of engineered nanomaterials on plants compared with the harmful effects of these 
nanoparticles

Item in details Selected References

The beneficial effects nanomaterials (under low concentration)

(1)- Nanomaterials have an important role in plant development and 
growth parameters such as: 

Ma and Gao (2015); Zhang et al. 
(2015); Khan et al. (2017); Zuverza-
Mena et al. (2017)

- Seed germination: nanomaterials (e.g. nano-TiO2) help plants in 
water absorption, regulate water permeability, activate of genes 
responsible for water channel protein and improving germination 
of seeds

Zheng et al. (2005); Heinen and 
Chaumont (2009); Khodakovskaya et 
al. (2011)

- Germination rate: due to the nanomaterials penetration into the seed 
coupled, an increase in seed water uptake

Khodakovskaya et al. (2009); Zaytseva 
and Neumann (2016)

- Plant growth: nanomaterials (e.g. nano-TiO2) improve through 
enhancing N metabolism and photosynthesis as well as better cell 
growth by regulating cell cycle

Yang et al. (2006); Mingyu et al. 
(2007a, b); Khodakovskaya et al. (2011)

(2)- Nanoparticles also can play a significant role in the protection of 
plants against various abiotic stresses 

Khan et al. (2017); Reedy et al. (2016); 
Hatami et al. (2016)

(3)- These nanomaterials enhance and mimic the action of antioxidative 
enzymes as well as scavenging the ROS 

Rico et al. (2013a, b); Taran et al. 
(2016)

(4)- Small size and large surface area of these nanoparticles provide access 
for toxic metals for binding and thus reduced availability and toxicity of 
metals 

Worms et al. (2012); Pulimi and 
Subramanian (2016)

(5)- Nanomaterials can protect the photosynthetic system as well as 
improving the photosynthesis process by suppressing oxidative and 
osmotic stresses 

Miller et al. (2017); Zuverza-Mena et 
al. (2017)

The harmful of nanomaterials on plants (under high concentration)

(1)- Nanomaterials show some distinguished toxicity symptoms at high 
concentration Slomberg and Schoenfisch, (2012)

(2)- Nanomaterials also alter gene expression involved in biotic and abiotic 
stress responses including cell biosynthesis, cell organization, electron 
transport and energy pathways 

Aken (2015); Hristozov et al. (2016); 
Khan et al. (2017)

(3)- Excess of nanomaterials in the growth medium induces oxidative 
stress and causes reduction in germination rate, root and shoot length and 
loss of photosynthesis, chlorophyll and then reduce biomass

Barhoumi et al. (2015); Da Costa and 
Sharma (2016); Wang et al. (2016); 
Zuverza-Mena et al. (2017)

(4)- Excess of nanomaterials in growth medium may reduce nutritive value 
of crop plants 

Peralta-Videa et al. (2014); Khan et al. 
(2017)

Source: Khan et al. (2017).
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osmotic pressure in under drought conditions 
(Khan et al. 2004). Zinc influence auxin production 
(Waraich et al. 2011a), where it represents a co-
enzyme for tryptophane synthesis, a precursor to 
indole acetic acid production which promotes the 
root development and water deficiency tolerance 
in plants (Waraich et al. 2011b). As mentioned 
earlier, the supplementation of micro element 
in small size (nano size) facilitate its uptake by 
plant and reduce the used dose. So, the previous 
functions of zinc can be achieved more efficiently 
when using nano zinc. It is investigated that, yield 
and water use efficiency of sunflower plant using 
nano-ZnO under water stress compared with bulk 
ZnO (Seghatoleslami and Forutani 2015). The 
result indicated that, in full irrigation treatment 
the highest seed and biomass were related to bulk 
ZnO treatments, but under water stress conditions 
the highest biomass and water use efficiency was 
related to nano-ZnO treatment. Totally the result 
indicated that application of nano-ZnO increased 
seed yield and water use efficiency.

Nano titanium oxide (nano-TiO2)
Titanium has significant biological effects 

on plants, being beneficial at low levels but 
toxic at higher concentrations. Photo-catalytic 
degradation of pesticides with TiO2 and other 
catalyst has shown promise as potential water 
remediation method (Lee et al. 2003). Nano- 
TiO2 can improve photosynthetic apparatus and 
enhance a plant’s ability to capture sunlight, 
that affects the manufacture of pigments and 
the transformation of light energy to active 
electron and chemical activity and thus increase 
photosynthetic efficiency as in maize, especially 
under drought stress (Akbari et al. 2014). Nano-
TiO2 also was observed to promote the growth 
of spinach through an increase in photosynthetic 
rate and nitrogen metabolism in spinach (Yang 
et al. 2006). Nano-TiO2 can enhance plant water 
and nitrogen use and stimulate some antioxidant 
enzyme activities, such as SOD, POD and CAT 
such as in canola (Mahmoodzadeh et al. 2013) 
and wheat plants (Jaberzadeh et al. 2013). Shallan 
et al. (2016) investigated the effects of nano-
TiO2 and nano-SiO2 on chemical constituents and 
yield characteristics of cotton plant under drought 
stress. The results showed that pretreatment of 
cotton plants under drought stress with nano-
TiO2 or nano-SiO2 caused increasing of pigments 
content, total soluble sugars, total phenolics, total 
soluble proteins, total free amino acids, proline 
content, total reducing power, total antioxidant 
capacity and antioxidant enzyme activities 

and enhancement of yield characteristics. The 
optimum concentration of nano-TiO2 and nano-
SiO2 to alleviate the drought stress in cotton plants 
was 50 ppm and 3200 ppm, respectively. Finally, 
it can be concluded that foliar application of nano-
TiO2 or nano-SiO2 could improve the drought 
tolerance of cotton plants. On the other hand, 
application of nano-TiO2 can decrease cadmium 
(Cd) stress and increase Cd uptake in soybean 
plants. The suggested mechanism is the formation 
of new bonds in the plant tissue with the Cd/nano-
TiO2 particles (Singh and Lee 2016).

Therefore, it could be concluded the role 
of low concentrations of nanomaterials in 
ameliorating of the plant abiotic stress through 
some mechanisms such as protecting plants 
against different abiotic stresses by (1) activating 
the plant cell signals due to over production of 
reactive oxygen species (ROS) and/or reactive 
nitrogen species (RNS) and (2) stimulating plant 
defense system (enzymatic and non-enzymatic 
antioxidant activities), accumulating of osomolytes 
and free amino acids as well as nutrients (Khan 
et al. 2017), whereas these nanomaterials may 
be caused a toxicological effects on plants under 
high concentrations (Husen and Siddiqui 2014). 
It is worth to mention that, the application of 
nanomaterials to stressed plants (or under adverse 
environmental conditions) may enhance the 
generation process of different reactive species 
(ROS and RNS) leading to damage resulting from 
the oxidative stress (Chichiriccò and Poma 2015; 
Khan et al. 2017). 

Conclusion                                                                         

Great challenges face the global agricultural 
production including the changes in climate, the 
depletion of water and land resources, energy 
problems, abiotic stresses, etc. The proper 
solutions in facing these challenges should be 
more sustainable and more eco-friendly. The agri-
nanotechnology is considered one of the most 
important and promising issues in this context. It is 
found that, nanomaterials can alleviate the damage 
resulting from different abiotic stresses through 
activating process of plant defense system. It is 
also well known that, these nanomaterials have 
the ability to penetrate plant tissues due to their 
small size. These nanomaterials also can improve 
the facilities of surface area to be more effective 
in adsorption process and in delivery targeted 
substances. Due to the properties of nanomaterials, 
they can regulate water uptake by plant tissues, 
hence promote the seed germination and plant 
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growth. Concerning the role of nanomaterials in 
alleviating the damage of plant abiotic stresses 
or in inhibiting plant growth and its toxicity, 
further studies are essential under different levels 
including plant molecular and cellular levels. 
Although, a few reports have some interpretations 
regarding the toxic effects of nanomaterials on 
plants, there is still an urgent need to elucidate 
the residual effects of applied nanomaterials on 
different agroecosystems.
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