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HIS study represents a field trial to increase production of wheat grown under arid conditions.To 

fulfill this purpose, the experiment was conducted for two successive winter seasons comprising the 

treatments: biogas manure to satisfy 100% of P and K-requirements (organic P and K, T1), “rock 

phosphate + feldspar” to fulfill 100% of P and K+ biofertilizers (Bacillus megatherium and Bacillus 

circulans, T2), 50% organic P and K+ the other 50% as rock phosphate and feldspars+ bioagents (T3), 

100% organic-P and K+ biofertiliozers (T4), rock phosphate and feldspars to satisfy 100% of P and K-

needs+ bioagents in presence of either potassium humate (T5), humic acid (T6) or fulvic acid (T7), 50% 

of P and K as biogas manure + 50% of P and K as mineral fertilizers+ bioagents (T8) beside of the 

reference treatment ( 100% mineral P and K fertilizers) (T9). Results indicated that the treatment T8 

recorded the highest increases in wheat growth parameters, grain yield and net revenues. These values 

exceeded even the corresponding ones of the reference treatment. Moreover, T8 recorded the highest 

increases in NPK available contents in soil and consequently their contents within grains. Significant-

positive correlations were detected between NPK contents in grains and the yield. Additionally, T8 

upraised soil organic matter content and, therefore, decreased soil bulk density. In contrast, bio-fertilizers 

(solely or with organic additives) did not affect wheat growth and productivity. In conclusion, the 

treatment T8 is guaranteed to increase wheat productivity in arid soils. 

Keywords: Bacillus megatherium; Bacillus circulans; biogas; rock phosphate; feldspars. 

 

1. Introduction 

Global world population increases drastically 

overtime and maybe this population surpass 9 billion 

populations by year 2050 (King et al., 2017; Fasusi et 

al., 2021). Such increases threaten food security 

(Eigenbrod and Gruda, 2015; Igiehon et al., 2017; 

Abdalla and El-Ramady, 2022; Rashed and Hammad, 

2023) for many reasons: Firstly, available arable land 

per person might only be by 2050 one third the 

accessible area in 1970 (Benke and Tomkins, 2017). 

Though, there should be a marked increase in food 

production by at least 70% (King et al., 2017). 

Secondly, intensive use of agrochemicals has been 

doubled since the last century (Carvalho, 2017) and 

these inputs contain pollutants that persist in the 

surrounding environment (Atieno et al., 2020) and 

disturb it (Tomer et al., 2016; Kaur and Purewal, 

2019; Fasusi et al., 2021). Commonly, unmanaged use 

of agrochemicals leads to unsustainable degradation 

of soil (Cisse et al., 2019; Kopittke et al., 2019; 

Mahapatra, 2022) which may continue in the coming 

years (Meddich et al., 2020).  

Sustainable agriculture has become therefore an 

obligation to increase plant productivity (Odoh et al., 

2020) and, at the same time, ensure the environmental 

quality objectives (Meddich et al., 2020; Odoh et al., 

2020). Organic additives may substitute partially 

synthetic fertilizers (Farid et al., 2014; Elshony et al., 

2019; Abdelhafez et al., 2021b; Hussein et al., 2022; 

Farid et al., 2023) after being processed and recycled 

in soil (Bassouny and Abbas, 2019; Diacono et al., 

2019; Farid et al., 2022; Dianatmanesh et al., 2022; 

Lalarukh et al., 2022b; Omara and Farrag, 2022). 

Also, organic extracts, which are relatively stable in 

soil (Farid et al., 2018), may improve and sustain soil 

health (Farid et al., 2021 a and b; Rashwan and 

Elsaied, 2022). 

Bio-fertilization is another reliable alternative to 

synthetic fertilizers (Rahimi et al., 2019; Omara et al., 

2022) that maintain long term soil fertility (Odoh et 

al., 2020). Thus, the bio-approach is considered the 

T 

 

Environment, Biodiversity & Soil Security 
http://jenvbs.journals.ekb.eg/ 

12 

https://doi.org/10.21608/jenvbs.2023.221177.1223


 I. M. FARID, et al., 

_________________________________________________________________________________________________________________ 

________________________________ 

Env. Biodiv. Soil Security, Vol. 7 (2023) 

164 

key towards sustainable production (Reddy et al., 

2020). The term “biofertilizers” refer to microbial 

inoculants that can either fix N (Negi et al., 2021; 

Reddy et al., 2020) such as Paenibacillus 

polymyxa (previously known by Bacillus 

polymyxa) (Padda et al., 2017) or mobilize plant 

nutrients (Abd El-Wahab, 2016; Igiehon et al., 2017; 

Reddy et al., 2020) such as Bacillus megatherium ( a 

P solubilizing bacteria) and Bacillus circulans (a K 

solubilizing bacteria) (AbdEl-Nabi et al., 2016). 

Furthermore, beneficial biota plays important roles in 

restoring hemostasis (Ennab et al., 2016; Lalarukh et 

al., 2022b), enhancing formation of soil aggregates 

and increasing their stability (Yilmaz and Sönmez, 

2017), controlling soil-borne pathogens (Mohamed et 

al., 2019; Eid et al., 2019; Abdelhafez et al., 2021a) 

and promoting the overall plant health (Elsayed et al., 

2020). It is then thought that integrated use of 

synthetic, organic and bio-fertilizers may successfully 

enhance plant growth and, at the same time, sharply 

increase the revenues (Jilani et al., 2007; Abbas et al., 

2011). 

Wheat is an important strategic crop worldwide 

(Dianatmanesh et al., 2022; Lalarukh et al., 2022 a, b 

and c). It is probably the most important winter crop 

in Egypt (Elbeltagi et al., 2020); yet, this country has 

become one of the largest wheat importers around the 

world (Abdelmageed et al., 2019). It is therefore 

important to increase its productivity in Egypt to 

diminish the gap between production and 

consumption (Hussein et al., 2022; Saad et al., 2023). 

This study is a trial towards evaluating the integrated 

management of chemical, organo- and bio N, P and K-

fertilizers to increase wheat production in arid zones 

and, at the same time, improve soil characteristics to 

sustain soil productivity on the long run. We believe 

that the outcomes of this study might contribute 

significantly in sustaining soil productivity. 

Specifically, we anticipate that organic and/or bio-

fertilizers applications partially substitute chemical 

fertilizers in wheat production; thus, increase wheat 

growth and productivity versus the reference 

treatment that received the full dose of PK mineral 

fertilizers (hypothesis 1). Such increases were mostly 

related to the concurrent increases that occurred in 

NPK available contents in soil (hypothesis 2); which 

upraised significantly their contents within wheat 

plants, particularly within grains (hypothesis 3). 

Furthermore, organic and/or bio- additives improve 

significantly soil chemical and physical 

characteristics, i.e. soil pH, residual organic matter 

content and bulk density (hypothesis 4). 

2. Materials and Methods 

2.1. Materials of study 

Two soil samples were collected from a private farm 

at Moshtohor, Qalyubia Governorate, Egypt (31° 22 ́

26 ̋E and 30° 36́ 02̋ N) prior to wheat cultivation in the 

winter seasons of 2019 and 2020. Soil physical and 

chemical characteristics were determined as outlined 

by Klute (1986) and Sparks et al. (1996) (Table 1).  

 

Table 1. Physical and chemical characteristics of the investigated soil. 
Character 1st 

season 
2nd 
season 

Mean Character 1st 
season 

2nd 
season 

Mean 

Particle size distribution  pH* 8.1 8.0 8.1 
Sand (%) 33.7 32.9 33.3 EC** (dS m-1) 1.4 1.4 1.4 
Silt (%) 19.5 20.4 20.0 Avail-N (mgkg-1) 69.0 73.0 71.0 
Clay (%) 46.8 46.3 46.6 Avail-P (mgkg-1) 6.3 6.7 6.5 
Textural class Clay Clay Clay Avail-K (mgkg-1) 174.0 185.0 179.5 
Organic matter (g kg-1) 12.9 13.1 13.0 CaCO3        (g kg-1) 19.1 18.3 18.7 

pH* was determined in soil:water suspension (1:2.5soil-water suspension). EC** was determined in soil paste 

extract 

Wheat seeds (Triticum aestivum, Misr l) were kindly 

obtained from the Field Crops Research Institute, 

Agricultural Research Center (ARC), Egypt. Three 

bioagents i.e. a N-fixer (Bacillus polymyx EMCCN 

1108), a phosphate solubilizing (Bacillus 

megatherium, HKP-2) and a potassium solubilizing 

(Bacillus circulans, NCAIM B.02324 ) bacteria were 

obtained  from the Microbiology Department at Soils, 

water and Environment Research Institute, ARC, then 

grown on nutrient broth media to achieve inoculant 

cells equivalent to 1×108 mL-1 according to 

ALKahtani et al. (2020). 

Biogas manure was brought from the Training Center 

for Recycling of Agricultural Residues at Moshtohor 

(TCRAR), ARC.  Its chemical properties are 

presented in Table 2. Potassium humate, humic and 

fulvic acids were then extracted from biogas 

according to Sanchez – Monedero et al .(2002). 

Humic acid was purified via washing with 0.05 N 

H2SO4 till it becomes colorless, then subjected to 

electro- dialyses to diminish its ash content (<1%) 

(Chen and Schnitzer, 1978); thereby this extract was 

air dried. The supernatant containing fulvic acid was 

passed through activated charcoal, elution of charcoal 

then membrane filter and electrodialyses for 

purification as recommended by Kononova (1966). 

Chemical properties of the extracted KH, HA and FA 

are also presented in Table 2. 
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Table 2. Chemical characteristics of potassium humate, humic and fulvic acids extracted from biogas 

manure. 

Characteristics Biogas 
manure 

K-humate 
(HK) 

Humic acid 
(HA) 

Fulvic acid (FA) 

CEC (cmolec kg-1) 470.00 460 440 320 
C (%) 21.90 50.5 52.1 48.4 
N (%) 2.20 2.62 3.94 2.76 
H (%) 4.11 3.28 4.58 2.85 
S (%)   2.97 4.20 2.98 3.79 
O (%) 68.82 39.4 36.4 42.2 
P (%) 7.80 0.23 0.30 0.27 
K (%) 9.30 2.18 2.41 2.32 
Total acidity (cmolc kg-1) 530.00 570 620 680 
COOH group (cmolc kg-1) 210.00 230 255 270 
Phenolic OH group (cmolc kg-1)  310.00 340 355 410 

Rock phosphate (0.37 g N, 112 g P and 3.2 g K kg-1) 

and feldspar (0.25 g N, 0.4 g P and 109 g K kg-1) were 

brought from Al Ahram Mining Company. 

2.1. Methods of study 

A field study of a randomized block design was 

accomplished for two successive winter seasons i.e. 

2019 and 2020 at the above-mentioned farm. 

Treatments were as follows: (1) 100% of required P in 

organic form (biogas, T1), (2) rock phosphate to 

satisfy 100% of P + feldspar  to fulfil 100% of K 

requirements + biofertilizers (T2), (3) 50% of P and K 

were applied in the form of biogas+ 50% of P and K 

as rock phosphate and feldspars + bioagents (T3), (4) 

100% of required P and K in organic form (biogas)  

+biofertiliozers (T4), (5) 24 kg potassium humate 

(KH) ha-1+100% of P and K as rock phosphate and 

feldspars+ bioagents (T5), (6) 24 kg humic acid (HA)  

ha-1+100% of P and K as rock phosphate and 

feldspars+ bioagents (T6), (7) 24 kg fulvic acid (FA)  

ha-1 +100% of P and K as rock phosphate and 

feldspars+ bioagents (T7), (8) 50% of P and K as 

biogas + 50% of P and K as mineral fertilizers+ 

bioagents (T8) and (9) 100% mineral P and K 

fertilizers (T9, the reference treatment). For all 

treatments, P and K were achieved at the 

recommended doses (10.5 g P and 20 g K kg-1 soil, 

respectively) according to the Egyptian Ministry of 

Agriculture. Concerning the application of bio-

fertilizers, it took place via two equal doses (30 and 60 

days after sowing) at a total rate of 24 L ha-1. The 

experimental plot was 12.25 m2 (3.5 m length x 3.5 m 

width) and all treatments were replicated three times. 

In November (2019 and 2020), wheat seeds were 

cultivated in all plots at a rate of 120 kg ha-1. Eighty 

percent of the recommended requirements of N for 

wheat which is equivalent to 240 g N kg-1 were added 

in the form of ammonium nitrate (335 g N kg-1) at 

three equal doses after considering the organic N 

inputs. The other 20% N needs were satisfied via 

biological nitrogen fixation with Paenibacillus 

polymyx. All agricultural activities were followed as 

usual. At harvest stage, plant growth parameters and 

yield were determined. 

2.2. Soil and Plant analyses 

Soils were sampled from each plot during plant harvest, 

to estimate their contents of available P and K 

according to Sparks et al. (1996) as follows: available- 

P by Olsen then reduced by ascorbic acid afterwards 

determined by Spectrophotometer (SM1600 UV-VIS). 

Available- K was extracted by ammonium acetate then 

determined by flame photometer (Jenway model 

PFP7). Available NH4-N and NO3-N were determined 

using Kjeldahl. Soil pH was determined by Orion 

Expandable ion analyzer (EA920) in 1:2.5 (soil:water 

suspension). Electrical conductivity was measured in 

soil paste extract using an EC meter (ICM 71150) and 

residual organic matter content was assessed according 

to Walkley and Black method as outlined by Sparks et 

al. (1996). Soil bulk density was estimated using the 

core method according to Klute (1986). Nitrogenase 

(N2- ase) activity was evaluated via acetylene-ethylene 

assay (Hardy et al., 1968), then determined via Gas 

Chromatography (Hewlett-Packard 5890). 

Wheat grains were oven dried at 70̊ C for 48 h, ground 

in a porcelain mortar and plant portions, equivalent to 

0.5g dried samples, were wet using a mixture of 

sulphuric and perchloric acids according to Page et al. 

(1982) then analysed for their contents of N by 

Kjeldahl, P colormetrically and K by flame 

photometer as mentioned above. 
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Fig. 1. Scheme of the experiment. 

 

2.3.  Data analyses 

Chemicals used in this study were of analytical grade. 

Data were subjected to analyses of variance using a 

one- way ANOVA and Dunken’s texts via SPSS 

statistical software (ver 18). Figures were plotted by 

Sigma plot 10 software. 

To calculate the net revenues of the used treatments in 

local currency payment (1$≈ 30 Egyptian pound, 

EGP), the following calculations were considered per 

hectare for each season:  

a. Non-changeable expenses (fixed for all 

treatments): land rental = 25400 L.E., seeds = 

1200 L.E., urea = 4800 EGP, the N- fixer 

(Paenibacillus polymyx) =480 EGP ha-1, hired 

labor and machinery (soil preparation, cropping, 

irrigation, fertilization, yield cutting and packing) 

= 7860 EGP (total costs= 39740 EGP).  

b. Changeable expenses (differ among 

treatments): (1) calcium super-phosphate valued 

320 EGP for a pack of 100 kg, (2) Potassium 

sulphate was 400 EGP per pack of 50 kg. 

Potassium feldspar and rock phosphate valued 

1950 and 1200 EGP (per megagram), 

respectively.  Biogas was worth 500 EGP per 

megagram. P and K biofertilizers expensed 950 

EGP, while humic, fulvic and K-humate additives 

valued approximately 140 EGP per one kilogram.    
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c. Selling prices were 10,000 EGP per every mega 

gram of wheat grains in addition to 4800 EGP for 

the straw yield of the hectare. 

The net profit was then estimated as a difference 

between the selling prices of both seeds and straw 

minus all costs (Saad et al., 2023). 

3. Results and Discussion 

3.1. Effect of integrated organic and biofertilizers on 

wheat growth parameters and productivity  

The highest increases in straw and grain yields of 

wheat during both seasons of study as well as the 

weight of 1000 grain were achieved when wheat 

plants received T8 (50%organic+50%synthetic 

PK+bioagents), exceedingly even the reference 

treatment i.e. T9 (Fig 2). These results signify the 

importance of the integration between different forms 

of nutrients to increase crop productivity (Abbas et al., 

2020; Farid et al., 2021c). On the other hand, T7 (24 

kg FA ha-1 +P-input in the form of rock phosphate and 

K-input in the form of feldspars+ bioagents) recorded 

the least records related to plant growth parameters 

and productivity within both seasons of study. It is 

worthy to mention that there were no significant 

variations among treatments in plant height. 

Generally, the full dose of biogas application (T1) 

recorded significantly higher increases in all plant 

growth parameters and grain yield versus the 

treatment that received both rock phosphate and 

feldspar as sole sources for P and K plus biofertilizers. 

Although, phosphate solubilizing (Bacillus 

megatherium) (Hu et al., 2006) and potassium 

solubilizing (Bacillus circulans) (Yadav and Sidhu, 

2016) bacteria exhibited high efficiencies for 

increasing nutrient availability in soil while reducing 

the use of agrochemicals in crop production (Etesami 

et al., 2017); yet their efficiencies might not be enough 

if they are used solely to improve crop productivity 

(Etesami et al., 2017). A point to note is that the first 

type (Bacillus megatherium) is an acidifying bacteria 

while the second one (Bacillus circulans) is a 

saprophytic one (Meena et al., 2014).  

Partial substitution of these minerals by organic 

application (biogas) was not enough to increase plant 

growth and yield component i.e. T3 versus T9. On the 

contrary, this treatment recorded significantly lower 

records versus either T1 or T2. Probably these 

bioagents, particularly B. circulance satisfy their 

needs from the readily available forms of nutrients or 

those released upon organic matter decomposition 

(Hou et al., 2017; Chhetri et al., 2022) rather than 

mineralizing rock phosphate and feldspars. This 

explains reasonably the reductions that occurred in 

plant growth and productivity owing to application of 

50% or 100 % biogas (to a lower extent) doses +the 

biofertilizers (T4).  

In presence of relatively resistant biodegradable 

organic products (potassium humate, humic and fulvic 

acids), fulvic acid (T7) exhibited higher efficiencies in 

increasing wheat grain yield and the weight of 1000 

grains versus other organic extracts. Probably, these 

bioagents dissolve P and K bearing minerals (Etesami 

et al., 2017) and FA specifically increased their 

mobility in soil to reach the roots of the grown plants 

(Yang et al., 2013). Moreover, HA might retain 

partially some of the soluble ions against leaching 

(Piri et al., 2019). These treatments recorded 

relatively lower consequences on wheat straw yield, 

versus its impacts on grain yield. This probably 

indicates that the chelated nutrients via FA were 

utilized mainly in enhancing plant productivity rather 

than increasing wheat vegetative growth.  

Application of 100% biogas set nutrients free at 

relatively slow rates and this was not enough to attain 

proper plant growth (Farid et al., 2021b); in spite of 

that this treatment decreased the rate of nutrient 

leaching from the top soil (Barthod et al., 2018). 

Overall, this treatment recorded significantly lower 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/saprotroph
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growth parameters and yield components versus the 

reference one. Based on the above results, organic 

applications (-/+ bio-fertilizers) partially and not 

totally substitute chemical fertilizers in wheat 

production thus increased wheat growth and 

productivity. Consequently, the first hypothesis 

becomes valid. 
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Fig. 2. Wheat growth parameters and grain yield (means ± standard deviations) as affected by the integral management 

of P and K synthetic, organic and bio-inputs. No statistical difference among treatments sharing same Dunkin’s 

letters. For T1 to T9: 100% of P and K as biogas (T1), rock phosphate to satisfy 100% of P + feldspar to fulfill 

100% of K requirements + biofertilizers (T2), 50% of P and K as biogas + 50% of P and K as rock phosphate 

and feldspars + bioagents (T3), 100% of P and K as biogas +biofertilizers (T4), 24 kg KH ha-1 +100% of P and K 

as rock phosphate and feldspars+ bioagents (T5), 24 kg HA  ha-1+100% of P and K as rock phosphate and 

feldspars+ bioagents (T6), 24 kg FA  ha-1 +100% of P and K as rock phosphate and feldspars+ bioagents (T7), 

50% of P and K as biogas + 50% mineral fertilizers+ bioagents (T8) and 100% mineral P and K fertilizers (T9). 
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3.2. Effect of integrated organic and bio fertilizers on 

available N, P and K in soil as well as the activity of 

nitrogenase enzyme 

Fig 3 reveals that T8 recorded the highest increases in 

N, P and K available contents in soil. Their values 

were even higher than the reference treatment that 

received the full dose of PK as mineral fertilizers. 

Although, application of biogas was not enough to 

stimulate considerably the biological oxygen fixation 

versus the reference treatment because this additive 

was of slow release rate; yet this additive increased 

significantly available NH4-N that released during its 

degradation (Farid et al., 2021a and b). Consequently, 

this nitrogen probably underwent oxidation in soil 

forming NO3-N (Glaser et al., 2010).  
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Fig. 3. Available NPK contents in soil and the activity of nitrogenase enzyme (means±standard deviations) 

as affected by the integral management of P and K synthetic, organic and bio-inputs. No statistical 

difference among treatments sharing same Dunkin’s letters. See footnote Fig. 2. 
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Likewise, application of 50% mineral+50% organic+ 

bioagents (T8) increased N2-ase yet to a lower extent 

versus T4 during the two seasons of study as the latter 

treatment probably released bioactive components 

needed to stimulate the activities of N-fixers. 

Significant reductions were noticed in activities of N2-

ase enzyme owing to application of bioagents+ P and 

K bearing minerals (rock phosphate and feldspar). It 

is well known that soil biota converts atmospheric 

nitrogen to ammonium via this enzyme (Bellés-

Sancho et al., 2021); yet they also need nutrients, and 

these nutrients were relatively low in the soil that was 

supplied with both feldspar and rock phosphate.  Thus, 

bioagents take part in organic matter degradation 

(Chhetri et al., 2022) to utilize organic nutrients to 

stimulate their bioactivities. This might explain why 

the application of 100% organic +bioagents raised 

considerably the activity of this enzyme versus the 

application of biogas solely.  

Addition of either KH, HA or FA significantly raised 

the activity of N2-ase enzyme versus the that of the 

reference treatment with superiority of HA among the 

organic extracts. Its high molecular weight (HA) 

probably retained nutrients longer in soil (Yang et al., 

2020) hence stimulated the activities of N-fixing 

micro-organisms.  

Generally, the investigated additives significantly 

raised P and K available contents in soil and these 

results support the second hypothesis. 

3.3. Effect of organic and bio fertilizers on NPK 

contents within grains 

The highest increases in N and P contents within 

wheat grains were attained for T8 treatment, followed 

by T9 (the reference treatment), while the variations in 

K content between these two treatments were almost 

insignificant (Fig 4).  
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Fig. 4. Concentrations of NPK in wheat grains (means± standard deviations) as affected by the integral 

management of P and K synthetic, organic and bio-inputs. No statistical difference among treatments 

sharing same Dunkin’s letters.  See footnote Fig. 2. 

 

Application of the investigated bioagents in absence 

of organic additives as in the case of T2 or in presence 

of biogas as its half (T3) or full dose (T4) decreased 

significantly nutrient contents within seeds versus the 

reference dose. Probably, these inoculants took part in 
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organic matter degradation as mentioned above and 

competed on soil nutrients with the grown plants.  

In case of P and K contents in wheat grains, 

application of relative low biodegradable organic 

additives and/or bioagents that release slowly 

nutrients might account for the significant reductions 

in P and K contents within grains. Overall, the third 

hypothesis indicating that organic additives and 

biofertilizers raised significantly NPK contents within 

wheat plants, particularly in grains becomes 

acceptable if integrated with the application inorganic 

of organic fertilizers. 

3.4. Effect of organic and bio fertilizers on soil pH, 

residual organic matter and soil bulk density 

All organic applications raised significantly soil 

organic matter, and this consequently decreased soil 

bulk density (Fig 5). On the other hand the least 

contents of residual soil organic matter were noted 

with the application of both T2 and T9 treatments with 

no significant variations between these treatments. 

Also, these two treatments recorded the highest 

increases in values of soil bulk density. These results 

signify the importance of organic applications on 

raising soil organic matter forming aggregates.  
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Fig. 5. Soil pH, residual organic matter and bulk density (means ± standard deviations) as affected by the 

integral management of P and K synthetic, organic and bio-inputs. No statistical difference among 

treatments sharing same Dunkin’s letters.  See footnote Fig. 2. 
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Two scenarios might explain these findings: (1) 

organic fractions were trapped within soil aggregates 

(Kleber et al., 2021); hence decreased soil bulk 

density. The other assumption indicates that these 

organics underwent degradation in soil forming 

microbial resistant biproducts (Abdelhafez et al., 

2018) which were trapped among soil particles 

forming aggregates (Mohamed et al., 2021). Both 

scenarios seemed to be applicable at the same time in 

soil as the first one explains the increases that took 

place in soil organic matter owing to application of 

each of humic acid or potassium humate which are 

characterized by their high molecular mass (Abd El- 

Aziz et al., 2020; Farid et al., 2021a and b) thus 

exhibited higher resistance against degradation while 

in case of fulvic acid, its low organic molecular mass 

facilitates its mobility in soil (Ukalska-Jaruga  et al., 

2021) and become more easily biodegradable versus 

either humic or potassium humate treatments (Fourti 

et al., 2010). 

Application of 50% biogas plus 50% chemical 

fertilizers and biofertilizers (T8) recorded comparable 

values of soil organic matter content and soil bulk 

density with the treatment that received double the 

biogas dose (T1). May be, organic matter and mineral 

additives stimulated microbial activities and, at the 

same time, enhanced plant growth. This beneficial 

relationship within the rhizosphere could increase 

microbial byproducts which may take part in building 

up of soil organic matter and formation of aggregates 

(Abdelhafez et al., 2018); hence lessen soil bulk 

density.  

In case of application of 50% biogas+ 50% K as rock 

phosphate and feldspars+ biofertilizers, the results of 

organic matter content and soil bulk density were a bit 

confusing.  

Although, the investigated bioagents increased the 

rate of organic matter degradation; yet their 

corresponding bulk density values were still high. 

Probably, the rate of degradation of organic additives 

or their byproducts were relatively high; hence these 

residues did not account for either increasing soil 

organic matter content or even decreased soil bulk 

density. These results signify the importance of the 

symbiotic relation between soil biota and organic 

additives on organic matter build up within soil 

aggregates as stated above.  

Concerning soil pH, no significant variations were 

found among treatments. This result might be related 

to the high buffering capacity of the clay content in 

soil (Dvořáčková et al., 2022) that resisted changes in 

soil pH. Also, released organic acids during 

degradation of organic additives might increase soil 

buffering capacity (Xue et al., 2022). Generally, 

organic and bio additives raised soil organic matter, 

and this consequently increased soil aggregation while 

did not affect soil pH. These results support partially 

the fourth hypothesis. 

3.5. Correlation coefficients between wheat growth 

parameters and grain yield with relation to the NPK 

contents in grains and the corresponding available 

contents in soil  

Concentrations of NH4-N and NO3-N in soil were 

correlated significantly and positively with the 

activity of N2-ase enzyme (Table 3). This simply 

refers to the positive relationship between organic 

applications and the activities of soil N2 fixers. Also, 

there was a significant correlation between NH4-N and 

NO3-N. Probably, the released ammonium ions 

underwent partial oxidation in soil forming nitrate 

ions.  

Overall, grain and straw yield were correlated 

significantly and positively with the available indices 

of N, P and K in soil. Likewise, the nutritional status 

of these nutrients in grains was correlated positively 

with the available indices of these nutrients in soil.  

The quality parameter (1000-grain weight) also 

increased with increasing NPK contents in grains. 

Plant height was correlated positively and 

significantly with only P and K available contents in 

soil. A point to note is that K is a mobile nutrient 

within plants that is not metabolized to an organic 

form; thus it plays vital physiological processes in its 

soluble forms such as osmoregulation (Wang et al., 

2021); thus there is no wonder to find out that the grain 

yield was not affected significantly by K in grains. 

Also, plant height was not affected by K-grains.  
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Table 3. Wheat growth parameters and yield in relation to the available contents of NPK in soil  and corresponding contents in grains. 

 

 
N2-ase 

enzyme 

Available 

NH4-H 

Available 

NO3-H 

Available- 

PO4
3- 

Available- 

K+ 

Grain 

yield 

Straw 

yield 

1000-grain 

weight 

Plant 

height 

N-

grain 

P-

grain 

K-

grain 

N2-ase enzyme             

Available NH4-H 0.267            

Available NO3-H 0.366** 0.918**           

Available- PO4
3- 0.444** 0.100 0.437**          

Available- K+ 0.317* 0.215 0.415** 0.767**         

Grain yield -0.332* 0.015 <0.001 -0.047 0.138        

Straw yield 0.446** 0.753** 0.774** 0.284* 0.332* 0.071       

1000- grain 

weight 

0.235 0.552** 0.762** 0.719** 0.640** 0.069 0.579**      

Plant height 0.273* 0.204 0.246 0.388** 0.629** -0.001 0.464** 0.356**     

N-content in 

grains 

0.155 0.372** 0.575** 0.764** 0.804** 0.205 0.295* 0.767** 0.324*    

P-content in 

grains 

0.223 0.369** 0.626** 0.740** 0.649** 0.256 0.489** 0.776** 0.390** 0.728**   

K-content in 

grains 

0.254 0.164 0.435** 0.775** 0.720** 0.276* 0.299* 0.584** 0.251 0.858** 0.793**  

* Significant at the 0.05 level     ** Significant at the 0.01 level 
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3.6. Financial revenues of the used treatments 

The highest revenue was recorded for the treatment 

that received “50% of P and K as biogas + 50% 

mineral fertilizers+ bioagents” (T8) in both seasons of 

study (Fig 6). Revenues of each of T1, T7 and T9 

seemed also to be high and somehow comparable in 

the two seasons of study, yet still below the 

corresponding ones of T8. On the other hand, the least 

net profit was estimated for T6 treatment that received 

24 kg HA ha-1+100% of P and K as rock phosphate 

and feldspars+ bioagents. 
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Fig. 6. Net profit in thousand EGP (means ± standard deviations) as affected by the integral management 

of P and K synthetic, organic and bio-inputs. No statistical difference among treatments sharing same 

Dunkin’s letters.  See footnote Fig. 1. 

 

4. Conclusions 

The treatment “50% of P and K as biogas + 50% of P 

and K as mineral fertilizers+ bioagents” recorded the 

highest available increases in NPK contents in soil, 

exceeding even the reference treatment that received 

the full dose of P and K as chemical fertilizers. Such 

increases lead to significant increases in NPK uptake 

by plants, to raise their contents in grains. This might 

consequently enhance wheat growth and productivity. 

Moreover, soil characteristics were improved 

considerably owing to this combined application i.e. 

residual organic matter content increased significantly 

while soil bulk density decreased considerably. 

Accordingly, this treatment is guaranteed to increase 

and sustain soil productivity within arid regions 
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